Trianions by Regio- and Stereo-selective Lithiation of Diallylamines and Structurally Related Compounds: Synthetic Applications

José Barluenga, ${ }^{*, a}$ Rosario González, ${ }^{a}$ Francisco J. Fañanás, ${ }^{\boldsymbol{a}}$ Miguel Yus ${ }^{\text {b }}$ and Francisco Foubelo ${ }^{b}$
a Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain
${ }^{\text {b }}$ Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo 99, 03080 Alicante, Spain

The successive treatment of diallylamines 1 and related systems 8 and benzylallylamines 12 or 17 with alkyllithium reagents leads to several trianionic intermediates 4, 10 and 15, respectively; in the case of N, N^{\prime}-diallylethylenediamine 18 tetranionic species are obtained under the same reaction conditions. These trianions and tetranions are characterized by reaction with deuterium oxide to yield the corresponding deuteriated compounds 5, 11, 16 and 21. Likewise, another trianion 3a is obtained in an indirect way from diallylamine 1a via stereoselective removal of a vinylic hydrogen and further transmetallation of the vinyltin reagent 22. Models are proposed to explain the lithiation and addition steps, which take place to give the trianions. Finally, all the lithiated intermediates react with different electrophiles (diethyl carbonate, carbon dioxide, dichlorodimethylsilane and dichlorodiethylgermanium) to give the corresponding products 27, 29, 30 and 35-44.

Reactions that involve specific removal of a proton from a carbon atom and subsequent reaction of the resulting carbanion with electrophiles are important processes in organic synthesis. ${ }^{1}$ We have described reactions in which secondary allylic amines undergo regio- and stereo-selective deprotonations to give the corresponding dilithiated dianions and their reaction with different electrophiles. ${ }^{2}$ In the present article we present the behaviour of diallylamines and related compounds towards several alkyllithium reagents and the reaction of the resulting intermediates with different electrophiles.

Results and Discussion

Lithiation of Diallylamines.-Successive treatment of diallylamines 1 with butyllithium and tert-butyllithium at temperatures in the range -50 to $20^{\circ} \mathrm{C}$ led to the vinylic lithiated dianion 2. ${ }^{2}$ In this context, it is interesting to note the high chemoselectivity shown by compound 1b, which affords exclusively dianion $\mathbf{2 b}$. The reaction of the intermediates $\mathbf{2}$ with $\mathrm{Bu}^{t} \mathrm{Li}$ at temperatures in the range -20 to $20^{\circ} \mathrm{C}$ did not give rise to deprotonation of the vinylic hydrogen of the other allyl moiety to afford the trilithiated diallylamines 3 , but instead quantitative addition of $\mathrm{Bu}^{t} \mathrm{Li}$ to the double bond led to formation of the corresponding trianion 4. \dagger When $\mathrm{Bu}^{s} \mathrm{Li}$ was added instead of $\mathrm{Bu}^{t} \mathrm{Li}$ the corresponding addition product was again formed. The addition of a primary alkyllithium (EtLi and BuLi) occurs in a similar manner, but the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) was necessary in order to favour the addition reaction. These trianions were characterized by treatment with deuterium oxide to yield the deuteriated compound 5^{4} (Scheme 1 and Table 1).
The above results can be understood as follows. The lithiation of the first allyl group can occur if we assume that the nitrogen atom of the lithium amide, formed in the first step, can coordinate to the lithium atom of $\mathrm{Bu}^{t} \mathrm{Li}$, increasing its reactivity and inducing a proximity effect. ${ }^{5}$ The other lithium atom interacts with the double bond thereby fixing the s-cis geometry
\dagger The addition of an alkyllithium reagent to the unactivated carboncarbon double bond is very unusual. ${ }^{3}$
and allowing the vinylic hydrogen atom placed at the cis position relative to the nitrogen substituent to be removed (see model 6 of Fig. 1). In agreement with this is the fact that no reaction was observed when the amine lacks cis hydrogen atoms. On the other hand, model 7 (Fig. 1) accounts well for the addition step. So, the interaction of the lithium atom of the amide with the alkyl group of the organolithium reagent together with the simultaneous proximity effect allows the coordination of the double bond to the lithium atom and consequently the addition reaction.

Lithiation of Structurally Related Systems.-In order to verify the above proposed models to explain the results obtained for the lithiation of diallylamines, we attempted the lithiation of compounds structurally related to diallylamines. Treatment of N-allyl-1-naphthylamine $\mathbf{8}$ with BuLi and $\mathrm{Bu}^{t} \mathrm{Li}$ at temperatures in the range -50 to $20^{\circ} \mathrm{C}$ afforded the dianion 9 by removal of the peri hydrogen. Treatment of this intermediate with an equimolecular amount of $\mathrm{Bu}^{t} \mathrm{Li}$ or a primary alkyllithium (EtLi, BuLi) in the presence of TMEDA led to the expected trianion $\mathbf{1 0}$ by quantitative addition of the corresponding alkyllithium to the carbon-carbon double bond of the allyl group. These trianions were characterized by reaction with $\mathrm{D}_{2} \mathrm{O}$ to yield, after hydrolysis, the deuteriated products 11 (Scheme 2 and Table 1). When the same reaction was carried out with N-allylbenzylamine 12 a nearly equimolecular mixture of dianion 13, obtained by deprotonation of the vinylic hydrogen, and trianions 15 , obtained by removal of the ortho hydrogen ${ }^{6}$ and subsequent addition of the alkyllithium to the double bond of the allyl moiety, was obtained. Further reaction with $\mathrm{D}_{2} \mathrm{O}$ afforded the deuteriated products 14 and 16. In order to avoid the competition between the ortho and vinylic deprotonation in the metallation step we started from N-allyl-2-bromobenzylamine 17 , which, when treated under the same reaction conditions, led exclusively to dideuterio product 16 (Scheme 2 and Table 1).
Finally, the successive reaction of N, N^{\prime}-diallylethylenediamine 18 with BuLi and $\mathrm{Bu}^{4} \mathrm{Li}$ or BuLi-TMEDA at temperatures in the range -50 to $20^{\circ} \mathrm{C}$ did not lead to the abstraction of the vinylic hydrogens, but instead gave quantitative

2
a; $R^{1}=H$
b; $R^{1}=M e$

3

5

Scheme 1 Reagents and conditions: i, BuLi, -50 to $-30^{\circ} \mathrm{C}$; ii, $\mathrm{Bu}^{t} \mathrm{Li}$, -30 to $20^{\circ} \mathrm{C}$; iii, $\mathbf{R}^{2} \mathrm{Li}\left(\mathbf{R}^{2}=\mathrm{Bu}^{t}, \mathrm{Bu}^{5}\right),-20$ to $20^{\circ} \mathrm{C}$ or $\mathbf{R}^{2} \mathrm{Li}\left(\mathbf{R}^{2}=\right.$ Et, Bu)/TMEDA, $20^{\circ} \mathrm{C}$; iv, $\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$; v, water

6

7

Fig. 1
addition of alkyllithium to the double bonds, which led to the formation of the corresponding tetraanion 20 , which reacted with $\mathrm{D}_{2} \mathrm{O}$ to yield the products 21 (Scheme 3 and Table 1). The fact that the vinylic hydrogens are not removed can be explained by assuming that the two nitrogen atoms of the amide 19 can coordinate with both lithium atoms thus avoiding the coordination with the lithium atom of the alkyllithium reagent and consequently the induction for the lithiation.

Synthesis of Compound 3a.-The intermediate 3a cannot be prepared by direct lithiation of compound 1a, but can be

Scheme 2 Reagents and conditions: i, BuLi, -50 to $-30^{\circ} \mathrm{C}$; ii, $\mathrm{Bu}^{\prime} \mathrm{Li}$, -30 to $20^{\circ} \mathrm{C}$; iii, $\mathrm{R}^{2} \mathrm{Li}\left(\mathbf{R}^{2}=\mathrm{Bu}\right)^{t}$, -20 to $20^{\circ} \mathrm{C}$ or $\mathbf{R}^{2} \mathrm{Li}\left(\mathbf{R}^{2}=\mathrm{Et}\right.$, $\mathrm{Bu}) / \mathrm{TMEDA}, 20^{\circ} \mathrm{C}$; iv, $\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$; v, water
indirectly obtained from the stannane 22, formed by reaction of dianion 2a with tributylchlorotin. Successive reaction of compound 22 with BuLi and $\mathrm{Bu}^{1} \mathrm{Li}$ afforded the dianionic species 23, which in situ reacts with BuLi at temperatures in the range -30 to $20^{\circ} \mathrm{C}$ to give trianion 3a (Scheme 4). It is worth noting that the preparation of trianion $3 a$ can be carried out in a one-pot process starting from compound 1a. ${ }^{7}$

Reaction with Electrophiles.-The synthetic utility of the lithiated intermediates was studied with respect to different electrophiles. The reaction of trianion 4 with diethyl carbonate at -78 to $20^{\circ} \mathrm{C}$ afforded, after hydrolysis, the corresponding

Scheme 3 Reagents and conditions: i, $\mathrm{BuLi},-50$ to $-30^{\circ} \mathrm{C} ; \mathrm{ii}, \mathrm{R}^{2} \mathrm{Li}$ $\left(\mathbf{R}^{2}=\mathbf{B u}\right),-30$ to $20^{\circ} \mathrm{C}$ or $\mathbf{R}^{2} \mathrm{Li}\left(\mathbf{R}^{2}=\mathrm{Bu}\right) /$ TMEDA, $20^{\circ} \mathrm{C}$; $\mathrm{iii}, \mathrm{D}_{2} \mathbf{O}$, $20^{\circ} \mathrm{C}$; iv, water

Scheme 4 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnCl},-78$ to $20^{\circ} \mathrm{C}$; ii, water; iii, $\mathrm{BuLi},-50$ to $-30^{\circ} \mathrm{C}$; iv, $\mathrm{Bu}^{\mathrm{t}} \mathrm{Li},-30$ to $20^{\circ} \mathrm{C}$
pyrrolizidine 27. This reaction presumably occurs via formation of either an eight-membered ring 24 or a butyrolactam 25, which spontaneously cyclizes to yield the corresponding hemiaminal 26; aromatization under the reaction conditions gives the final product 27 (Scheme 5). However, the reaction trianion of 4 with CO_{2} did not lead to compound 27. Instead, the corresponding amino acid salts 28 were formed. Controlled hydrolysis gave the (Z)-amino acid 29 . On the other hand, esterification of $\mathbf{2 8}$ with anhydrous ethanol and hydrogen chloride in order to facilitate the isolation of the product took place with isomerization of the double bond to afford the corresponding (E)-amino ester $\mathbf{3 0}^{8}$ (Scheme 5 and Table 1). Moreover, the reaction of trianion 4 with dichlorodimethylsilane or dichlorodiethylgermanium in the range -78 to $20^{\circ} \mathrm{C}$ yielded, after hydrolysis, the corresponding azasilocine or azagermocine derivatives 35 and 36 (Scheme 5 and Table 1). We have observed that an excess of dichlorometalloid is necessary, because when 1 mol equiv. is used the yields are lower, and after deuteriolysis, along with the products 35 and 36, the deuteriated derivatives 5 , which arise from the unchanged intermediates 4, were observed. According to these observations, the reaction can be explained by assuming the formation of the species 31 or 32 , which favour cyclization to the eight-membered-ring compounds. These intermediates 31 and 32 yield the metallo bridged compounds 33 and 34 , which, after hydrolysis, afford final products 35 and $\mathbf{3 6}$, respectively (Scheme 5). The proposed mechanism is supported by the ${ }^{29} \mathrm{Si}$ NMR data. Compound 33ab shows two signals at $\delta_{\text {si }} 11.8$ and -16.5 for the silicon atoms, whereas the product 35ab presents one signal at $\delta_{\mathrm{si}}-26.9$ in the spectrum (both referred to hexamethyldisiloxane). ${ }^{9}$

On the other hand, the reactivity of intermediates $\mathbf{1 0}, 15$ and

29
30

Scheme 5 Reagents and conditions: $\mathrm{i},(\mathrm{EtO})_{2} \mathrm{CO},-78$ to $20^{\circ} \mathrm{C}$; ii, $\mathrm{CO}_{2},-78$ to $20^{\circ} \mathrm{C}$; iii, water, $20^{\circ} \mathrm{C}$; iv, $\mathrm{EtOH} / \mathrm{HCl}$, reflux; $\mathrm{v}, \mathrm{Na}_{2} \mathrm{CO}_{3}$; vi, $\mathrm{MCl}_{2}\left(\mathrm{M}=\mathrm{SiMe}_{2}, \mathrm{GeEt}_{2}\right),-78$ to $20^{\circ} \mathrm{C}$

20c has been tested towards CO_{2} and dichlorodimethylsilane and dichlorodiethylgermanium. The carbonation of these intermediates and further esterification with ethanol and hydrogen chloride led to the lactams 37,38 and 39 c , respectively. On the other hand, the reaction of intermediate 15 with the corresponding dichlorometalloid led to the benzazasilocine and benzazagermocine derivatives 40 and 41, respectively (Scheme 6 and Table 1).

Scheme 6 Reagents and conditions: i, $\mathrm{CO}_{2},-78$ to $20^{\circ} \mathrm{C}$, ii, EtOH/ HCl , reflux; iii, $\mathrm{Na}_{2} \mathrm{CO}_{3}$; iv, $\mathrm{MCl}_{2}\left(\mathrm{M}=\mathrm{SiMe}_{2}, \mathrm{GeEt}_{2}\right),-78$ to $20^{\circ} \mathrm{C}$; v , water

Finally, we have studied the reaction of intermediate 3a with three electrophiles (carbon dioxide, dichlorodimethylsilane, and dichlorodiethylgermanium). The reaction with CO_{2} and further esterification with $\mathrm{EtOH}-\mathrm{HCl}$ led to the diester 42 with isomerization in both double bonds. The reaction with $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ and $\mathrm{Et}_{2} \mathrm{GeCl}_{2}$ afforded, after hydrolysis, the corresponding azasilocine and azagermocine derivatives 43 and 44 (Scheme 7 and Table 1).

Experimental

All reactions involving organometallic reagents were executed under nitrogen in glassware that had been flame dried, and then cooled under nitrogen. M.p.s were measured on a Büchi-Tottoli capillary melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AC-200 and AC300 spectrometers. Tetramethylsilane was used as the internal standard with CDCl_{3} as the solvent for the ${ }^{1} \mathrm{H}$ NMR spectra and the central line of $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}} 76.95\right)$ was referenced in ${ }^{13} \mathrm{C}$ NMR spectra. J Values are given in Hz . Mass spectra (EI) were determined at 70 eV with a Hewlett-Packard 5987A spectrometer; only selected ions are reported here. HRMS were measured with an AutoSpecEQ/VG spectrometer. Elemental analysis was carried out with a Perkin-Elmer 240 Elemental Analyzer. All solvents and reagents were obtained from commercial sources and were used without further purification.

42

$43 \mathrm{M}=\mathrm{SiMe}^{2}$
$44 \mathrm{M}=\mathrm{GeEt}_{2}$
Scheme 7 Reagents and conditions: i, $\mathrm{CO}_{2},-78$ to $20^{\circ} \mathrm{C}$; ii, $\mathrm{EtOH} /$ HCl , reflux; iii, $\mathrm{Na}_{2} \mathrm{CO}_{3}$; iv, $\mathrm{MCl}_{2}\left(\mathrm{M}=\mathrm{SiMe}_{2}, \mathrm{GeEt}_{2}\right),-78$ to $20^{\circ} \mathrm{C}$; v , water

Diethyl ether was distilled from sodium/benzophenone under nitrogen before use. TMEDA was distilled from BuLi and stored under nitrogen.

General Procedure for the Lithiation of Compounds 1, 8, 12, 17 and 18 and the Reaction with Electrophiles.-A solution of BuLi (5 mmol) in hexane was added to a solution of the corresponding amine (5 mmol) in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred for 20 min at temperatures in the range -50 to $-30^{\circ} \mathrm{C}$. A solution of $\mathrm{Bu}^{t} \mathrm{Li}(5 \mathrm{mmol})$ in pentane was added to the resulting mixture at $-30^{\circ} \mathrm{C}$ with further stirring for 2 h while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The mixture was cooled to $-20^{\circ} \mathrm{C}$, a solution of alkyllithium (5 mmol) was added [when primary alkyllithium was used, TMEDA (5 mmol) was added at $20^{\circ} \mathrm{C}$] and the mixture was stirred for 2 h in the range -20 to $20^{\circ} \mathrm{C}$. After being cooled to $-78^{\circ} \mathrm{C}$, the mixture was treated with an excess of the corresponding electrophile, and was stirred while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The resulting mixture was then hydrolysed with water and extracted with diethyl ether. The combined ether layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and the resulting crude was purified by distillation, recrystallization or flash column chromatography.
(Z)-3-Deuterio-N-[2-(deuteriomethyl)butyl]allylamine 5aa. B.p. $22-24^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8(5 \mathrm{H}, \mathrm{d}$ and $\mathrm{t}, J 7.0$, Me and $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.0-1.5\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right.$ and $\left.\mathrm{CHCH}_{2} \mathrm{D}\right), 1.6(1 \mathrm{H}, \mathrm{s}$, NH), 2.2 ($1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $5.5, \mathrm{NCH}_{2} \mathrm{CHC}$), $2.4(1 \mathrm{H}, \mathrm{dd}, J$ 11.5 and $6.0, \mathrm{NCH}_{2} \mathrm{CHC}$), $3.1\left(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 4.9$ $(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C} H \mathrm{D}=\mathrm{CH})$ and $5.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHD}) ; \delta_{\mathrm{C}} 10.9$ (Me), $17.0\left(\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right), 27.1\left(\mathrm{CH}_{2} \mathrm{C}\right), 34.5\left(\mathrm{CHCH}_{2} \mathrm{D}\right)$, 52.3 and $55.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 115.0\left(\mathrm{t}, J_{\mathrm{CD}} 23.5, \mathrm{CD}=\mathrm{CH}\right)$ and 136.7 ($\mathrm{CH}=\mathrm{CD}$); $m / z 129\left(\mathrm{M}^{+}, 2 \%\right)$, 71 (100) and 42 (20) (Found: C, 74.1; H/D, 14.3; N, 11.0. $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{D}_{2} \mathrm{~N}$ requires C , 74.3; H/D, 14.8; N, 10.8\%).
(Z)-3-Deuterio- N -[2-(deuteriomethyl)hexyl] allylamine 5ab. B.p. $42-44^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9-1.0\left(5 \mathrm{H}, \mathrm{d}\right.$ and $\mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{D}$ and Me), $1.1-1.4\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and NH$), 1.5-1.6(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{D}\right), 2.5\left(1 \mathrm{H}, \mathrm{dd}, J 11.5\right.$ and $7.5, \mathrm{NCH}_{2} \mathrm{CHCH}_{2} \mathrm{D}$), 2.6 (1 $\mathrm{H}, \mathrm{dd}, J 11.5$ and $\left.6.0, \mathrm{NCH}_{2} \mathrm{CHCH}_{2} \mathrm{D}\right), 3.2(2 \mathrm{H}, \mathrm{d}, J 5.5$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CD}\right), 5.1(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C} H \mathrm{D}=\mathrm{CH})$ and $5.9-6.0(1 \mathrm{H}$, $m, \mathrm{CH}=\mathrm{CHD}$); $\delta_{\mathrm{C}} 13.6(\mathrm{Me}), 17.4$ ($\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}$), 22.6, 28.9 and $34.3\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 32.8\left(\mathrm{CHCH}_{2} \mathrm{D}\right), 52.3$ and 55.6 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 114.8\left(\mathrm{t}, J_{\mathrm{CD}} 23.5, C D=\mathrm{C}\right)$ and $136.6(C=\mathrm{CD}) ; m / z$ $157\left(\mathrm{M}^{+}, 4 \%\right), 71$ (100) and 42 (19) (Found C, 76.6; H/D, 14.5; $\mathrm{N}, 8.7 . \mathrm{C}_{10} \mathrm{H}_{19} \mathrm{D}_{2} \mathrm{~N}$ requires $\mathrm{C}, 76.35 ; \mathrm{H} / \mathrm{D}, 14.7 ; \mathrm{N}, 8.9 \%$).
(Z)-3-Deuterio-N-(2-deuteriomethyl-3,3-dimethylbutyl)allylamine 5 ac. B.p. $38-40^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9-1.0(11 \mathrm{H}, \mathrm{s}$ and d, J $7.0,3 \times \mathrm{Me}$ and $\mathrm{CH}_{2} \mathrm{D}$), 1.2-1.3(1 H, s, NH), 1.3-1.4 ($1 \mathrm{H}, \mathrm{m}$, CHCMe ${ }_{3}$), $2.2\left(1 \mathrm{H}, \mathrm{t}, J 11.0, \mathrm{NCH}_{2} \mathrm{CHCH}_{2} \mathrm{D}\right), 2.8(1 \mathrm{H}, \mathrm{dd}, J$ 11.0 and $3.0, \mathrm{NCH}_{2} \mathrm{CHCH}_{2} \mathrm{D}$), 3.2 and 3.3 ($2 \mathrm{H}, 2 \mathrm{dd}, J 14.0$ and

Table 1 Preparation of intermediates $\mathbf{3 , 4 , 1 0 , 1 5}$ and 20 from amines $1,8,17,18$ and 22, and reaction with electrophiles to give products 5, 11, 16, 21, 27, 29, 30 and 35-44

Starting amine	Intermediate	R^{1}	\mathbf{R}^{2}	Electrophile	Product	\% Yield ${ }^{\text {a }}$
1a	4aa	H	Et	$\mathrm{D}_{2} \mathrm{O}$	$5 a^{\text {a }}$	86
1a	4ab	H	Bu	$\mathrm{D}_{2} \mathrm{O}$	5ab ${ }^{\text {b }}$	87
12	4ac	H	Bu^{t}	$\mathrm{D}_{2} \mathrm{O}$	$5 \mathrm{ac}^{\text {b }}$	93
1a	4ad	H	$\mathrm{Bu}^{\text {s }}$	$\mathrm{D}_{2} \mathrm{O}$	$5 \mathrm{ad}^{\text {b.c }}$	91
1b	4bb	Me	Bu	$\mathrm{D}_{2} \mathrm{O}$	$5 \mathbf{b b}^{\text {b }}$	85
1b	4be	Me	$\mathrm{Bu}^{\text {t }}$	$\mathrm{D}_{2} \mathrm{O}$	$5 \mathbf{b c}^{\text {b }}$	86
8	10a		Et	$\mathrm{D}_{2} \mathrm{O}$	$11 a^{\text {b }}$	86
8	10b		Bu	$\mathrm{D}_{2} \mathrm{O}$	$11{ }^{\text {b }}$	87
8	10c		Bu^{t}	$\mathrm{D}_{2} \mathrm{O}$	$11{ }^{\text {b }}$	90
17	15a		Et	$\mathrm{D}_{2} \mathrm{O}$	$16 a^{\text {b }}$	87
17	15b		Bu	$\mathrm{D}_{2} \mathrm{O}$	$16 b^{\text {b }}$	89
17	15c		Bu^{t}	$\mathrm{D}_{2} \mathrm{O}$	$16{ }^{\text {b }}$	90
18	20b		Bu	$\mathrm{D}_{2} \mathrm{O}$	21b ${ }^{\text {b.d }}$	81
18	20c		$\mathrm{Bu}^{\text {t }}$	$\mathrm{D}_{2} \mathrm{O}$	$21 \mathrm{c}^{\text {b.d }}$	85
1a	4ab	H	Bu	$(\mathrm{EtO})_{2} \mathrm{CO}$	27ab	85
1a	4 ac	H	$\mathrm{Bu}^{\text {t }}$	$(\mathrm{EtO})_{2} \mathrm{CO}$	27ac	79
1b	4bb	Me	Bu	$(\mathrm{EtO})_{2} \mathrm{CO}$	27bb	76
1b	4bc	Me	Bu^{t}	$(\mathrm{EtO})_{2} \mathrm{CO}$	27bc	74
1 a	4ab	H	Bu	CO_{2}	29ab	42
12	4ab	H	Bu	$\mathrm{CO}_{2}{ }^{\text {e }}$	30ab	82
1a	4ac	H	Bu^{t}	$\mathrm{CO}_{2}{ }^{e}$	30 ac	78
1a	4ab	H	Bu	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	33ab	71
1a	4aa	H	Et	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	35aa	69
1a	4ab	H	Bu	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	35ab	72
1b	4ba	Me	Et	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	35ba	62
1b	4bb	Me	Bu	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	35bb	67
1 a	4aa	H	Et	$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	36aa	63
1a	4ab	H	Bu	$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	36ab	71
1b	4ba	Me	Et	$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	36ba	64
1b	4bb	Me	Bu	$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	36bb	68
8	10a		Et	$\mathrm{CO}_{2}{ }^{\text {e }}$	37a	72
8	10b		Bu	$\mathrm{CO}_{2}{ }^{\text {e }}$	37b	63
8	10c		Bu^{t}	$\mathrm{CO}_{2}{ }^{\text {e }}$	37c	60
17	15a		Et	$\mathrm{CO}_{2}{ }^{e}$	38a	65
17	15b		Bu	$\mathrm{CO}_{2}{ }^{e}{ }^{\text {e }}$	38b	64
17	15c		Bu^{t} Bu^{t}	$\mathrm{CO}_{2}{ }^{e}{ }^{\text {e }}$	38 c	67
18	20 c		$\mathrm{Bu}^{\text {t }}$	$\mathrm{CO}_{2}{ }^{\text {e }}$	$39 \mathrm{c}^{\text {d }}$	69
17	15a		Et	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	40a	67
17	15b		Bu	$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	40 b	74
17	15b		Bu	$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	41b	71
22	3a	H		$\mathrm{CO}_{2}{ }^{e}$	42	58
22	3a	H		$\mathrm{Me}_{2} \mathrm{SiCl}_{2}$	43	48
22	3a	H		$\mathrm{Et}_{2} \mathrm{GeCl}_{2}$	44	$54(52)^{f}$

${ }^{a}$ Isolated yield based on starting amine. ${ }^{b}$ Over 95% deuterium by mass spectrometry. ${ }^{c}$ Equimolecular mixture of diastereoisomers. ${ }^{d}$ Only one diastereoisomer. ${ }^{e}$ Further esterification with $\mathrm{EtOH}-\mathrm{HCl} .{ }^{f}$ From diallylamine 1 a in one-pot process.
$\left.6.0, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 5.1(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{CHD}=\mathrm{CH})$ and $5.9(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHD}) ; \delta_{\mathrm{C}} 12.8\left(\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right), 27.1(3 \times \mathrm{Me}), 32.1$ $\left(\mathrm{CMe}_{3}\right), 42.4\left(\mathrm{CHCMe}_{3}\right), 50.9$ and $52.0\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 115.8(\mathrm{t}$, $\left.J_{\mathrm{CD}} 23.5, C \mathrm{D}=\mathrm{C}\right)$ and $135.9(C=\mathrm{CD}) ; m / z 157\left(\mathrm{M}^{+}, 4 \%\right), 71(100)$ and 42 (10) (Found: C, 76.5; H/D, 14.3; N, 8.7\%).
(Z)-3-Deuterio-N-(2-deuteriomethyl-3-methylpentyl)allylamine 5 ad. B.p. $41-43^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8-1.0(8 \mathrm{H}, \mathrm{t}$ and 2 d , $J 7.0,2 \times \mathrm{Me}$ and $\mathrm{CH}_{2} \mathrm{D}$), 1.1-1.8 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}, 2 \times \mathrm{CHC}$ and NH), $2.4\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHCH}_{2} \mathrm{D}\right), 2.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}-\right.$ $\left.\mathrm{CHCH}_{2} \mathrm{D}\right), 3.2\left(2 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CD}\right), 5.0(1 \mathrm{H}, \mathrm{d}, J 10.0$, $\mathrm{CHD}=\mathrm{CH})$ and $5.8-5.9(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHD}) ; \delta_{\mathrm{C}} 11.8,13.6$ and $15.9(2 \times \mathrm{Me}), 12.2$ and $14.6\left(\mathrm{t}, \mathrm{J}_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right), 25.1$ and 27.3 $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 36.2,36.3$ and $37.5(2 \times \mathrm{CHC}), 52.4,52.5$ and 53.8 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 115.0\left(\mathrm{t}, J_{\mathrm{CD}} 23.0, C D=\mathrm{C}\right)$ and $136.8(\mathrm{C}=\mathrm{CD}) ; m / z$ $157\left(\mathrm{M}^{+}, 4 \%\right.$), 71 (100) and 42 (20) (Found: C, 76.6; H/D, 14.5; N, 8.75%).
(Z)-3-Deuterio-N-[2-(deuteriomethyl)hexyl]-2-methylallylamine 5bb. B.p. $53-55^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8-0.9(5 \mathrm{H}, \mathrm{d}$ and t , $J 7.0, \mathrm{Me} \mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.1-1.4\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and $\mathrm{NH}), 1.5-1.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{D}\right), 1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CD}), 2.3$ ($1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $7.5, \mathrm{NCH}_{2} \mathrm{CH}$), $2.5(1 \mathrm{H}$, dd, $J 11.5$ and 6.0 ,
$\mathrm{NCH} \mathrm{CH}), 3.1\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}\right.$ and $4.8(1 \mathrm{H}, \mathrm{s}, \mathrm{CHD}=\mathrm{C})$; δ_{C} $13.8\left(\mathrm{MeCH}_{2}\right), 17.5\left(\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right), 20.3(\mathrm{MeC}=\mathrm{CD}), 22.8$, 29.0 and $34.4\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 32.9\left(\mathrm{CHCH}_{2} \mathrm{D}\right), 55.5$ and 55.6 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 109.8\left(\mathrm{t}, J_{\mathrm{CD}} 23.5, C \mathrm{D}=\mathrm{C}\right)$ and $143.8(C=\mathrm{CD}) ; m / z$ $171\left(\mathrm{M}^{+}, 4 \%\right.$), 85 (100) and 56 (12) (Found: C, 77.25; H/D, 14.5; $\mathrm{N}, 8.1 . \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{~N}$ requires $\mathrm{C}, 77.1 ; \mathrm{H} / \mathrm{D}, 14.7$; $\mathrm{N}, 8.2 \%$).
(Z)-3-Deuterio-N-(2-deuteriomethyl-3,3-dimethylbutyl)-2methylallylamine 5be. B.p. $50-52^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9(11 \mathrm{H}$, s and d, $J .0,3 \times \mathrm{MeC}$ and $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.3-1.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCMe}_{3}\right.$ and NH), $1.7(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CD}), 2.2(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 10.0 , $\mathrm{NCH} \mathbf{2} \mathrm{CH}), 2.7\left(1 \mathrm{H}\right.$, dd, $J 11.5$ and $3.0, \mathrm{NCH}_{2} \mathrm{CH}$), 3.1 and 3.2 ($2 \mathrm{H}, 2 \mathrm{~d}, J 14.5, \mathrm{NCH}_{2} \mathrm{C}$) and $4.8(1 \mathrm{H}, \mathrm{s}, \mathrm{CHD}) ; \delta_{\mathrm{C}} 13.0\left(\mathrm{t}, J_{\mathrm{CD}}\right.$ 19.0, $\left.\mathrm{CH}_{2} \mathrm{D}\right), 20.5(\mathrm{MeCH}=\mathrm{CD}), 27.2(3 \times \mathrm{MeC}), 32.1\left(\mathrm{CMe}_{3}\right)$, $42.9\left(\mathrm{CHCMe}_{3}\right)$, 51.2 and $55.7\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 109.9\left(\mathrm{t}, J_{\mathrm{CD}} 23.5\right.$, $C \mathrm{D}=\mathrm{C}$) and 143.8 ($C=\mathrm{CD}$); $m / z 171\left(\mathrm{M}^{+}, 1 \%\right.$). 85 (100), 57 (14), 56 (30), 42 (16) and 41 (14) (Found: C, 77.4; H/D, 14.3; N, 8.3\%).

8-Deuterio-N-[2-(deuteriomethyl)butyl]-1-naphthylamine 11a. $R_{\mathrm{f}} 0.20$ (hexane); $\delta_{\mathrm{H}} 0.8\left(5 \mathrm{H}, \mathrm{m}\right.$, Me and $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.0-1.6(3$ $\mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 2.9(1 \mathrm{H}, \mathrm{dd}, J 11.9$ and 7.0 , $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.0\left(1 \mathrm{H}\right.$, dd, $J 11.9$ and $\left.6.0, \mathrm{CH}_{2} \mathrm{~N}\right), 4.2(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and 6.4-7.6 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 11.2(\mathrm{Me}), 17.3\left(\mathrm{t}, J_{\mathrm{CD}} 19.4\right.$,
$\left.\mathrm{CH}_{2} \mathrm{D}\right)$, $27.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 34.1(\mathrm{CH}), 49.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 119.3\left(\mathrm{t}, \mathrm{J}_{\mathrm{CD}}\right.$ 23.6, CD) and 103.8, 116.7, 123.1, 124.2, 125.4, 126.5, 128.5, 134.2 and 143.5 (ArC); $m / z 215\left(\mathrm{M}^{+}, 23 \%\right)$, 158 (13), 157 (100), 130 (22) and 129 (13) (Found: C, 83.8; H/D, 9.6; N, 6.3. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{~N}$ requires C, 83.65 ; $\mathrm{H} / \mathrm{D}, 9.85 ; \mathrm{N}, 6.5 \%$).

8-Deuterio- N -[2-(deuteriomethyl) hexyl]-1-naphthylamine 11b. $R_{\mathrm{f}} 0.21$ (hexane); $\delta_{\mathrm{H}} 0.9(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}), 1.1(2 \mathrm{H}, \mathrm{d}, 7.0$, $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.2-1.6\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and NH$), 1.9(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}_{2} \mathrm{D}$), $3.0\left(1 \mathrm{H}, \mathrm{dd}, J 11.5\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{~N}\right), 3.2(1 \mathrm{H}, \mathrm{dd}, J$ 11.5 and $6.0, \mathrm{CH}_{2} \mathrm{~N}$) and $6.6-7.8(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 13.8(\mathrm{Me})$, $17.6\left(\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right), 22.6,28.9$ and $34.3\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 32.3$ $\left(\mathrm{CHCH}_{2} \mathrm{D}\right), 50.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 119.0\left(\mathrm{t}, J_{\mathrm{CD}} 22.0, \mathrm{CD}\right)$ and 103.7 , $116.5,122.9,124.0,125.2,126.3,128.3,133.9$ and 143.3 (ArC); $m / z 243\left(\mathrm{M}^{+}, 29 \%\right), 158(12), 157(100)$ and 130 (16) (Found: C, 83.7; H/D, 10.1; $\mathrm{N}, 5.5 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{~N}$ requires $\mathrm{C}, 83.9 ; \mathrm{H} / \mathrm{D}$, 10.35; N, 5.75\%).

8-Deuterio-N-(2-deuteriomethyl-3,3-dimethylbutyl)-1-naphthylamine $11 \mathrm{c} . R_{\mathrm{f}} 0.22$ (hexane); $\delta_{\mathrm{H}} 1.1(11 \mathrm{H}, \mathrm{s}$, and d, $J 7.0$, $3 \times \mathrm{Me}$ and $\left.\mathrm{CH}_{2} \mathrm{D}\right), 1.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 1.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2 \mathrm{D})$, $3.0\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.10.0, \mathrm{CH}_{2} \mathrm{~N}\right), 3.6(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and 3.0 , $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$ and 6.7-7.9 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 13.5\left(\mathrm{t}, J_{\mathrm{CD}} 19.0, \mathrm{CH}_{2} \mathrm{D}\right)$, $27.5(3 \times \mathrm{Me}), 32.5\left(\mathrm{CMe}_{3}\right), 42.5\left(\mathrm{CHCH}_{2} \mathrm{D}\right), 46.5\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, 119.3 ($\mathrm{t}, J_{\mathrm{CD}} 23.0, \mathrm{CD}$) and 104.0, 116.8, 123.2, 124.3, 125.5, 126.6, 128.6, 134.3 and 143.6 (ArC); $m / z 243\left(\mathrm{M}^{+}, 17 \%\right), 158$ (12), 157 (100), 130 (29), 129 (14) and 116 (12) (Found: C, 84.2; H/D, 10.1; N, 5.8\%).

2-Deuterio-N-[2-(deuteriomethyl)butyl]benzylamine 16a. R_{t} 0.22 (hexane-ethyl acetate $1: 1) ; \delta_{\mathrm{H}} 0.8\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{D}\right)$, $1.0-1.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}, \mathrm{CH}\right.$ and NH), $2.3(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $\left.7.0, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.4\left(1 \mathrm{H}, \mathrm{dd}, J 11.5\right.$ and $\left.6.0, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.7(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}\right)$ and $7.1-7.2(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 11.2(\mathrm{Me}), 17.2(\mathrm{t}$, $J_{\mathrm{CD}} 19.1, \mathrm{CH}_{2} \mathrm{D}$), $27.4\left(\mathrm{CH}_{2} \mathrm{C}\right), 34.6(\mathrm{CH}), 54.0$ and 55.5 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and 126.7, 128.0, 128.2 and $140.5(\mathrm{ArC}) ; m / z 179$ ($\mathrm{M}^{+}, 2 \%$), 121 (57) and 92 (100) (Found: C, 80.7; H/D, 11.5; N, 7.7. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{D}_{2} \mathrm{~N}$ requires $\mathrm{C}, 80.4 ; \mathrm{H} / \mathrm{D}, 11.8 ; \mathrm{N}, 7.8 \%$).

2-Deuterio-N-[2-(deuteriomethyl)hexyl]benzylamine 16b. R_{f} 0.29 (hexane-ethyl acetate 1:1); $\delta_{\mathrm{H}} 0.8-1.5(13 \mathrm{H}, \mathrm{m}$, $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CHCH}_{2} \mathrm{D}$ and NH), $2.3(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and 7.2 , $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 2.5\left(1 \mathrm{H}\right.$, dd, $J 11.5$ and $\left.5.9, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.7(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{NC}$) and 7.2-7.3 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 14.1(\mathrm{Me}), 17.7\left(\mathrm{t}, J_{\mathrm{CD}}\right.$ 19.1, $\mathrm{CH}_{2} \mathrm{D}$), 22.9, 29.12 and $34.5\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 33.0(\mathrm{CH}), 54.0$ and $55.8\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and 126.7, 128.0, 128.2 and $140.5(\mathrm{ArC})$; $m / z 207\left(\mathrm{M}^{+}, 2 \%\right), 121$ (94) and 92 (100) (Found: C, 81.25; H/D, 11.9; $\mathrm{N}, 6.8 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{~N}$ requires $\mathrm{C}, 81.1 ; \mathrm{H} / \mathrm{D}, 12.15 ; \mathrm{N}$, 6.75%).

2-Deuterio-N-[2-(deuteriomethyl)-3,3-dimethylbutyl]benzylamine 16c. $R_{\mathrm{f}} 0.26$ (hexane-ethyl acetate 1:1); $\delta_{\mathrm{H}} 0.8(9 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{Me}), 0.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{D}\right), 1.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $2.2\left(1 \mathrm{H}, \mathrm{dd}, J 11.4\right.$ and $\left.10.2, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.8(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and $\left.3.0, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.7$ and $3.9\left(2 \mathrm{H}, 2 \mathrm{~d}, J 13.2, \mathrm{CH}_{2} \mathrm{NC}\right)$ and $7.2-$ $7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 13.0\left(\mathrm{t}, \mathrm{J}_{\mathrm{CD}} 19.4, \mathrm{CH}_{2} \mathrm{D}\right), 27.3(3 \times \mathrm{Me})$, $32.2(\mathrm{CMe}), 42.8(\mathrm{CH}), 51.5$ and $53.9\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and 126.6, $127.8,128.1$ and 140.3 (ArC); $m / z 207\left(\mathrm{M}^{+}, 4 \%\right), 121$ (70) and 92 (100); (Found: C, 81.3; H/D, 12.05; N, 6.6\%).
N, N '- Bis-[2-(deuteriomethyl)hexyl]ethylenediamine 21b. B.p. $106-108{ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8-1.5\left(26 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}\left[\mathrm{CH}_{2}\right]_{3}-\right.$ $\mathrm{CH}, 2 \times \mathrm{CH}_{2} \mathrm{D}$ and $2 \times \mathrm{NH}$), $2.3(2 \mathrm{H}, \mathrm{dd}, J 11.6$ and 7.3 , $\left.2 \times \mathrm{NCH}_{2} \mathrm{CH}\right), 2.4\left(2 \mathrm{H}, \mathrm{dd}, J 11.6\right.$ and $6.2,2 \times \mathrm{NCH}_{2} \mathrm{CH}$) and $2.6\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}} 13.9(2 \times \mathrm{Me}), 17.6\left(\mathrm{t}, J_{\mathrm{CD}} 18.8\right.$, $\left.2 \times \mathrm{CH}_{2} \mathrm{D}\right)$, 22.8, 29.0 and $34.5\left(6 \times \mathrm{CH}_{2} \mathrm{C}\right), 32.9(2 \times \mathrm{CH})$ and 49.3 and $56.3\left(4 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; m / z 257\left(\mathrm{M}^{+}-1,1 \%\right), 130$ (12), 129 (100), 58 (12) and 44 (47) (Found: C, 74.5; H/D, 14.5; $\mathrm{N}, 10.9 . \mathrm{C}_{16} \mathrm{H}_{34} \mathrm{D}_{2} \mathrm{~N}_{2}$ requires $\left.\mathrm{C}, 74.35 ; \mathrm{H} / \mathrm{D}, 14.8 ; \mathrm{N}, 10.85 \%\right)$.
$\mathrm{N}, \mathrm{N}^{\prime}-$ Bis-[2-(deuteriomethyl)-3,3-dimethylbutyl]ethylenediamine 21c. B.p. $97-99^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8(22 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Me}$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{D}\right), 1.1-1.4(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ and $2 \times \mathrm{NH}), 2.1(2$ H , dd, $J 11.2$ and $\left.10.0,2 \times \mathrm{NCH}_{2} \mathrm{CH}\right)$ and $2.5-2.8(6 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{NCH}_{2} \mathrm{CH}$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}} 12.9\left(\mathrm{t}, J_{\mathrm{CD}} 19.1,2 \times\right.$
$\left.\mathrm{CH}_{2} \mathrm{D}\right), 27.2(6 \times \mathrm{Me}), 32.0(2 \times \mathrm{C}), 42.8(2 \times \mathrm{CH})$ and 49.3 and $51.8\left(4 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; m / z 243\left(\mathrm{M}^{+}-15,4 \%\right), 172(21), 130$ (12), 129 (100) and 57 (16) (Found: C, 74.5; H/D, 14.6; N, 10.9%).

2-Butyl-2,3-dihydro-1 H-pyrrolizine 27ab. B.p. $52-54^{\circ} \mathrm{C} / 0.1$ $\mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}), 1.3-1.5\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right)$, $2.5\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{CN}\right), 2.9\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 3.0$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8.0, \mathrm{CH}_{2} \mathrm{CN}\right), 3.6$ and $4.1(2 \mathrm{H}, 2 \mathrm{dd}, J 10.0$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{~N}\right), 5.8(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $1.0, \mathrm{CH}=\mathrm{CN}), 6.2(1 \mathrm{H}, \mathrm{t}$, $J 3.0, \mathrm{CH}=\mathrm{CHN})$ and $6.6(1 \mathrm{H}$, dd, $J 3.0$ and $1.0, \mathrm{NCH}=\mathrm{CH}) ; \delta_{\mathrm{C}}$ $13.9(\mathrm{Me}), 22.6,30.2,30.8$ and $34.1\left(4 \times \mathrm{CH}_{2} \mathrm{C}\right), 42.8\left(\mathrm{CHCH}_{2}\right)$, $51.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 98.8(\mathrm{CH}=\mathrm{CN}), 111.5(\mathrm{CHN}), 113.4(\mathrm{CH}=\mathrm{CHN})$ and $136.5(\mathrm{CN}) ; m / z 163\left(\mathrm{M}^{+}, 24 \%\right), 106(100), 80(20)$ and 41 (10) (Found: $\mathrm{C}, 81.0 ; \mathrm{H}, 10.4 ; \mathrm{N}, 8.55 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}$ requires $\mathrm{C}, 80.9$; H, 10.5; N, 8.6%).

2-tert-Butyl-2,3-dihydro-1 H-pyrrolizine 27ac. B.p. 50-
$52^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me}), 2.6-2.9(3 \mathrm{H}, \mathrm{m}$, CHCH_{2} and $\mathrm{CH}_{2} \mathrm{C}$), $3.8\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.9.5, \mathrm{CH}_{2} \mathrm{~N}\right), 4.0(1$ $\mathrm{H}, \mathrm{dd}, J 10.0$ and $\left.8.0, \mathrm{CH}_{2} \mathrm{~N}\right), 5.8(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 1.0 , $\mathrm{CH}=\mathrm{CN}), 6.2(1 \mathrm{H}, \mathrm{t}, J 3.0, \mathrm{CH}=\mathrm{CHN})$ and $6.6(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $1.0, \mathrm{NCH}=\mathrm{CH}) ; \delta_{\mathrm{C}} 25.8\left(\mathrm{H}_{2} \mathrm{CN}\right), 27.2(3 \times \mathrm{Me}), 31.7$ $\left(\mathrm{CMe}_{3}\right), 47.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.3\left(\mathrm{CHCH}_{2}\right), 98.6(\mathrm{CH}=\mathrm{CN}), 111.5$ (CHN), $113.2(\mathrm{CH}=\mathrm{CHN})$ and $136.5(\mathrm{CN}) ; m / z 163\left(\mathrm{M}^{+}, 55 \%\right)$, 148 (17), 106 (100), 80 (37) and 41 (18) (Found: C, 80.8; H, 10.5; $\mathrm{N}, 8.5 \%$).
2-Butyl-6-methyl-2,3-dihydro-1H-pyrrolizine 27bb. B.p. 67$69^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8\left(3 \mathrm{H}, \mathrm{t}, J 7.0, M e \mathrm{CH}_{2}\right), 1.0-1.5(6 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{CH}_{2} \mathrm{C}\right), 2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}), 2.4(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 7.5 , $\mathrm{CH}_{2} \mathrm{CN}$), $2.7\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 2.8(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 8.0 , $\mathrm{CH}_{2} \mathrm{CN}$), 3.4 and $3.9(2 \mathrm{H}, 2 \mathrm{dd}, J 10.0$ and $7.5, \mathrm{CHN}), 5.5(1 \mathrm{H}$, $\mathrm{d}, J 1.0, \mathrm{CH}=\mathrm{CN})$ and $6.2(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{NCH}=\mathrm{CMe}) ; \delta_{\mathrm{C}} 12.3$ and $13.8(2 \times \mathrm{Me}), 22.5,30.1,30.9$ and $34.1\left(4 \times \mathrm{CH}_{2} \mathrm{C}\right), 42.3$ $\left(\mathrm{CHCH}_{2}\right), 51.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 100.2(\mathrm{CH}=\mathrm{CN}), 111.2(\mathrm{NCH}=\mathrm{CMe})$, $122.5(\mathrm{CMe}=\mathrm{CHN})$ and $136.2(\mathrm{CN}=\mathrm{CH}) ; m / z 193\left(\mathrm{M}^{+}+16\right.$, 12%), 136 (100), 80 (15), 69 (60) and 41 (20) (Found: C, 81.1; H, $11.0 ; \mathrm{N}, 7.6 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 81.3 ; \mathrm{H}, 10.8 ; \mathrm{N}, 7.9 \%$.
2-tert-Butyl-6-methyl-2,3-dihydro-1H-pyrrolizine 27be. B.p. $64-66^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 1.0(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{MeCCH}), 2.1(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}=\mathrm{CH}), 2.5-2.8\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right.$ and $\left.\mathrm{CHCH}_{2}\right), 3.7(1 \mathrm{H}$, dd, $J 10.0$ and $\left.9.5, \mathrm{CH}_{2} \mathrm{~N}\right), 3.9\left(1 \mathrm{H}, \mathrm{dd}, J 10.0\right.$ and $\left.8.0, \mathrm{CH}_{2} \mathrm{~N}\right)$, $5.6(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{CH}=\mathrm{CN})$ and $6.4(1 \mathrm{H}, \mathrm{d}, J 1.0, \mathrm{NC} H=\mathrm{CMe})$; $\delta_{\mathrm{C}} 12.3(\mathrm{MeC}=\mathrm{CH}), 25.9\left(\mathrm{CH}_{2} \mathrm{CN}\right), 27.1(3 \times \mathrm{MeCCH}), 31.6$ $\left(\mathrm{CMe}_{3}\right), 47.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.9\left(\mathrm{CHCH}_{2}\right), 99.9(\mathrm{CH}=\mathrm{CN}), 111.1$ ($\mathrm{N} C \mathrm{H}=\mathrm{CMe}$), $122.5(\mathrm{CMe}=\mathrm{CHN})$ and 136.4 ($\mathrm{CN}=\mathrm{CH}$); $m / z 193$ $\left(\mathrm{M}^{+}+16,6 \%\right), 136(100), 80(15), 69(89)$ and 41 (21) (Found: C, $81.4 ; \mathrm{H}, 10.6$; $\mathrm{N}, 7.9 \%$).
(Z)-7-Butyl-5-azanon-2-enedioic acid 29ab. Oil; $\delta_{\mathrm{H}} 0.9(3 \mathrm{H}, \mathrm{t}$, $J 7.0, \mathrm{Me}), 1.1-1.5\left(7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and NH$), 2.1(1 \mathrm{H}, \mathrm{dd}, J$ 16.5 and $\left.7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{CO}_{2}\right), 2.6(1 \mathrm{H}, \mathrm{dd}$, $J 16.5$ and $\left.8.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.0\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $7.0, \mathrm{NCH}_{2}-$ CHC), $3.5\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $8.5, \mathrm{NCH}_{2} \mathrm{CHC}$), $4.4(2 \mathrm{H}, \mathrm{d}, J$ $\left.6.0, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 5.9\left(1 \mathrm{H}, \mathrm{d}, J 11.5, \mathrm{C}=\mathrm{CHCO}_{2}\right), 6.1(1 \mathrm{H}, \mathrm{dt}$, $J 11.5$ and $\left.6.0, \mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and $9.0(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}) ; \delta_{\mathrm{C}} 13.6$ (Me), 22.3, 29.2 and $34.0\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right)$, $31.5\left(\mathrm{CHCH}_{2}\right), 37.1$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 40.8$ and $53.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 122.7\left(\mathrm{CHCO}_{2}\right), 143.8$ $\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and 168.7 and $175.1(2 \times \mathrm{CO}) ; m / z 225\left(\mathrm{M}^{+}-\right.$ 18, 34\%), 181 (18), 180 (76), 179 (32), 166 (14), 152 (50), 142 (14), 140 (19), 124 (14), 123 (11), 122 (54), 114 (23), 113 (38), 98 (10), 97 (24), 96 (40), 95 (35), 94 (27), 85 (19), 84 (42), 83 (35), 82 (20), 81 (11), 80 (12), 70 (21), 69 (31), 68 (77), 67 (41), 57 (29), 56 (30), 55 (98), 54 (16), 53 (19), 45 (14), 43 (25), 42 (26), 41 (100), 40 (13) and 39 (48).
(E)-Diethyl 7-butyl-5-azanon-2-enedioate 30ab. B.p. 123$125^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.9\left(9 \mathrm{H}, \mathrm{t}, J 7.0,2 \times \mathrm{MeCH}_{2} \mathrm{O}\right.$ and $M e \mathrm{CH}_{2} \mathrm{C}$), 1.1-1.6(7 H, m, $3 \times \mathrm{CH}_{2} \mathrm{C}$ and NH), $2.1(1 \mathrm{H}, \mathrm{dd}, J$ 16.5 and $\left.8.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.5(1 \mathrm{H}, \mathrm{dd}$, $J 16.5$ and $\left.7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.0(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and 7.0 , $\mathrm{NCH}_{2} \mathrm{CHC}$), $3.4\left(1 \mathrm{H}\right.$, dd, $J 9.5$ and $8.0, \mathrm{NCH}_{2} \mathrm{CHC}$), 4.0 and
$4.1\left(2 \mathrm{H}, 2 \mathrm{dd}, J 15.5\right.$ and $\left.5.5, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 4.2(4 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.2 \times \mathrm{CH}_{2} \mathrm{O}\right), 5.9\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{C}=\mathrm{CHCO}_{2}\right)$ and $6.8(1 \mathrm{H}, \mathrm{dt}, J$ 16.0 and $\left.5.5, \mathrm{CH}=\mathrm{CHCO}_{2}\right) ; \delta_{\mathrm{C}} 13.6$ and $13.8(3 \times \mathrm{Me}), 22.2$, 29.2 and $34.0\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 31.5\left(\mathrm{CHCH}_{2}\right), 37.0\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, 42.9 and $52.6\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.1\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 122.6(\mathrm{CHCO})$, $141.7\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and 165.3 and $174.2(2 \times \mathrm{CO}) ; m / z 270$ $\left(\mathrm{M}^{+}-29,5 \%\right), 253(20), 224(42), 208(37), 207(40), 196(30)$, 181 (13), 180 (100), 179 (68), 178 (19), 154 (11), 142 (18), 122 (34), 112 (13), $96(22), 95(14), 85(16), 84(18), 83(15), 69(13), 68$ (45), 67 (16), 57 (13), 56 (16), 55 (90), 43 (14), 42 (17), 41 (58) and 39 (20) (Found: C, 64.5; H, 9.4; N, 4.5. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{4}$ requires C, 64.2; H, 9.75 ; N, 4.7%).
(E)-Diethyl 7-tert-butyl-5-azanon-2-enedioate 30ac. B.p. 117$119^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.8(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{MeC}), 1.2(6 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.2 \times \mathrm{MeCH}_{2} \mathrm{O}\right), 2.1-2.4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2}, \mathrm{CHCH}_{2}\right.$ and NH$)$, $3.0\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.7.0, \mathrm{NCH}_{2} \mathrm{CHC}\right), 3.2(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $\left.8.5, \mathrm{NCH}_{2} \mathrm{CHC}\right), 3.8$ and $4.0(2 \mathrm{H}, 2 \mathrm{dd}, J 15.5$ and 5.5 , $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{C}\right), 4.1\left(4 \mathrm{H}, \mathrm{q}, J 7.0,2 \times \mathrm{CH}_{2} \mathrm{O}\right), 5.8(1 \mathrm{H}, \mathrm{d}, J 16.0$, $\left.\mathrm{C}=\mathrm{CHCO}_{2}\right)$ and $6.7\left(1 \mathrm{H}, \mathrm{dt}, J 16.0\right.$ and $\left.5.5, \mathrm{CH}=\mathrm{CHCO}_{2}\right) ; \delta_{\mathrm{C}}$ $13.9\left(2 \times \mathrm{MeCH}_{2}\right), 26.5(3 \times \mathrm{MeC}), 31.3\left(\mathrm{CMe}_{3}\right), 32.4$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 41.9\left(\mathrm{CHCMe}_{3}\right), 43.0$ and $48.4\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.3$ $\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 122.8\left(\mathrm{CHCO}_{2}\right), 141.7\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right)$ and 165.5 and $174.3(2 \times \mathrm{CO}) ; m / z 253\left(\mathrm{M}^{+}-46,14 \%\right), 224(24), 208$ (22), 207 (32), 196(15), 180 (58), 179 (31), 150 (20), 142(24), 124 (17), 123 (15), 122 (100), $96(15), 94(18), 85(17), 84(28), 83(14)$, 82 (13), 69 (27), 68 (32), 67 (15), 57 (49), 55 (44), 43 (10), 42 (11), 41 (60) and 39 (18) (Found: C, 64.5; H, 9.6; N, 4.9\%).

Bis-(3-Butyl-5,5-dimethyl-1,2,3,4,5,8-hexahydro-1,5-azasilo-cin-1-yl)dimethylsilane 33ab. B.p. $75^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg} ; \delta_{\mathrm{H}} 0.0$, $0.1,0.4$ and $0.5(18 \mathrm{H}, 4 \mathrm{~s}, 6 \times \mathrm{MeSi}), 0.3(2 \mathrm{H}, \mathrm{dd}, J 14.0$ and $\left.13.0,2 \times \mathrm{CH}_{2} \mathrm{Si}\right), 0.7\left(2 \mathrm{H}, \mathrm{d}, J 14.0,2 \times \mathrm{CH}_{2} \mathrm{Si}\right), 0.9(6 \mathrm{H}, \mathrm{t}, J$ $\left.6.5,2 \times \mathrm{MeCH}_{2}\right), 1.0-1.7\left(14 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and $2 \times \mathrm{CH}-$ $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 2.3\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 13.1,2 \times \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.8(2 \mathrm{H}$, dd, $J 13.1$ and $2.3,2 \times \mathrm{NCH}_{2} \mathrm{CHCH}_{2}$), 3.2 and $3.7(4 \mathrm{H}, 2$ ddd, $J 19.5,3.1$ and $\left.2.3,2 \times \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.4(2 \mathrm{H}, \mathrm{dt}, J 14.3$ and $2.1,2 \times \mathrm{CH}=\mathrm{CHSi})$ and $6.4(2 \mathrm{H}, \mathrm{dt}, J 14.3$ and $3.1,2 \times$ $\mathrm{CH}=\mathrm{CHSi}) ; \delta_{\mathrm{C}} 1.9,2.0$ and $2.1(6 \times \mathrm{MeSi}), 14.0(2 \times \mathrm{Me}-$ $\left.\mathrm{CH}_{2}\right), 21.2,22.9,29.3$ and $36.1\left(6 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{Si}\right)$, $37.0\left(2 \times \mathrm{CHCH}_{2} \mathrm{Si}\right), 53.4$ and $58.8\left(4 \times \mathrm{CH}_{2} \mathrm{~N}\right), 126.4(2 \times$ $\mathrm{CH}=\mathrm{CHSi})$ and $147.6(2 \times C \mathrm{H}=\mathrm{CHSi}) ; \delta\left({ }^{29} \mathrm{Si}\right)-16.5$ and 11.8 .

3-Ethyl-5,5-dimethyl-1,2,3,4,5,8-hexahydro-1,5-azasilocine
35aa. $R_{\mathrm{f}} 0.23$ (hexane-diethyl ether $\left.9: 1\right) ; \delta_{\mathrm{H}} 0.0$ and $0.1(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{MeSi}), 0.3\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.10.8, \mathrm{CH}_{2} \mathrm{Si}\right), 0.8(1 \mathrm{H}$, ddd, J $14.5,4.3$ and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 0.9(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{MeCH} 2), 1.0-1.4(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CHCH}_{2} \mathrm{Si}$ and NH$), 2.0(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 11.5$, $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.8\left(1 \mathrm{H}\right.$, dd, $J 11.5$ and $\left.1.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 3.3$ $\left(2 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.6(1 \mathrm{H}, \mathrm{dt}, J 12.8$ and 2.5 , $\mathrm{CH}=\mathrm{CHSi})$ and $6.3(1 \mathrm{H}, \mathrm{dt}, J 12.8$ and $2.5, \mathrm{CH}=\mathrm{CHSi}) ; \delta_{\mathrm{C}} 2.5$ and $4.1(2 \times \mathrm{MeSi}), 11.7\left(\mathrm{MeCH}_{2}\right), 22.3\left(\mathrm{CH}_{2} \mathrm{Si}\right), 28.9$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 38.7\left(\mathrm{CHCH}_{2} \mathrm{Si}\right), 51.1$ and $55.7\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 129.3$ $(\mathrm{CH}=\mathrm{CHSi})$ and $145.3(\mathrm{CH}=\mathrm{CHSi}) ; m / z 168\left(\mathrm{M}^{+}-15,100 \%\right)$, $126(48), 113$ (19), 112 (78), 110 (12), 99 (13), $98(99), 83$ (23) and 59 (17) (Found: C, 65.3; H, 11.7; N, 7.35. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NSi}$ requires C, $65.5 ; \mathrm{H}, 11.5 ; \mathrm{N}, 7.65 \%)$.

3-Butyl-5,5-dimethyl-1,2,3,4,5,8-hexahydro-1,5-azasilocine 35ab. $R_{\mathrm{f}} 0.27$ (hexane-diethyl ether $9: 1$); $\delta_{\mathrm{H}} 0.0$ and $0.1(6 \mathrm{H}$, $2 \mathrm{~s}, 2 \times \mathrm{MeSi}), 0.2\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.10.9, \mathrm{CH}_{2} \mathrm{Si}\right), 0.8(1 \mathrm{H}$, ddd, $J 14.5,4.5$ and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 0.9(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{MeCH} 2), 1.0-$ $1.5\left(8 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{Si}\right.$ and NH$), 2.0(1 \mathrm{H}, \mathrm{t}, J 10.8$, $\mathrm{NCH}_{2} \mathrm{CHCH}_{2}$), $2.8\left(1 \mathrm{H}, \mathrm{dd}, J 10.8\right.$ and $1.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}$), 3.3 $\left(2 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.5(1 \mathrm{H}, \mathrm{dt}, J 12.7$ and 2.5 , $\mathrm{CH}=\mathrm{CHSi})$ and $6.3(1 \mathrm{H}, \mathrm{dt}, J 12.7$ and $2.5, \mathrm{C} H=\mathrm{CHSi}) ; \delta_{\mathrm{C}} 2.5$ and $4.2(2 \times \mathrm{MeSi})$, $14.1\left(\mathrm{MeCH}_{2}\right), 22.8,23.0,29.5$ and 36.0 $\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 36.9\left(\mathrm{CHCH}_{2} \mathrm{Si}\right), 51.1$ and 56.1 $\left(2 \mathrm{CH}_{2} \mathrm{~N}\right), 129.3(\mathrm{CH}=\mathrm{CHSi})$ and $145.2(\mathrm{CH}=\mathrm{CHSi}) ; \delta\left({ }^{29} \mathrm{Si}\right)$ $-26.9 ; m / z 196\left(\mathrm{M}^{+}-15,100 \%\right), 126(64), 114(21), 113(72)$, 112 (19), 98 (77), 83 (16) and 59 (11) (Found: C, 67.9; H, 12.2; N, 6.4. $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NSi}$ requires $\mathrm{C}, 68.15 ; \mathrm{H}, 11.9 ; \mathrm{N}, 6.6 \%$).

3-Ethyl-5,5,7-trimethyl-1,2,3,4,5,8-hexahydro-1,5-azasilocine 35ba. $R_{\mathrm{f}} 0.37$ (hexane-diethyl ether $\left.9: 1\right) ; \delta_{\mathrm{H}} 0.0,0.1(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{MeSi}), 0.3\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.10.8, \mathrm{CH}_{2} \mathrm{Si}\right), 0.8(1 \mathrm{H}, \mathrm{ddd}, J$ $14.5,4.5$ and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 1.0\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{MeCH}_{2}\right), 1.1-1.5$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{CHCH}_{2} \mathrm{Si}\right.$ and NH$), 1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CH}), 2.1$ $\left(1 \mathrm{H}, \mathrm{t}, J 11.2, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.9(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 1.7 , $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 3.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)$ and $5.3(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}) ; \delta_{\mathrm{C}} 2.9$ and $4.7(2 \times \mathrm{MeSi}), 11.7\left(\mathrm{MeCH}_{2}\right), 22.5\left(\mathrm{CH}_{2} \mathrm{Si}\right)$, $23.2(\mathrm{MeC}=\mathrm{CH}), 28.8\left(\mathrm{CH}_{2} \mathrm{Me}\right), 38.6\left(\mathrm{CHCH}_{2} \mathrm{Si}\right), 54.3$ and 55.8 $\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), \quad 124.2(\mathrm{CH}=\mathrm{C})$ and $152.0(\mathrm{C}=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 182$ $\left(\mathrm{M}^{+}-15,64 \%\right), 140(41), 127(13), 126(79), 124(14), 113(13)$, 112 (100), 97 (37), 59 (22) and 43 (12) (Found: C, 66.6; H, 11.9; $\mathrm{N}, 6.8 . \mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NSi}$ requires $\mathrm{C}, 66.9 ; \mathrm{H}, 11.75 ; \mathrm{N}, 7.1 \%$).

3-Butyl-5,5,7-trimethyl-1,2,3,4,5,8-hexahydro-1,5-azasilocine 35bb. $R_{\mathrm{f}} 0.44$ (hexane-diethyl ether $\left.9: 1\right) ; \delta_{\mathrm{H}} 0.0,0.1(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{MeSi}), 0.2\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.10.9, \mathrm{CH}_{2} \mathrm{Si}\right), 0.7(1 \mathrm{H}, \mathrm{ddd}, J$ 14.5, 4.7 and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 0.9\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{MeCH}_{2}\right), 1.0-1.5$ $\left(8 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}, \mathrm{CHCH}_{2} \mathrm{Si}\right.$ and NH$), 1.7(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CH})$, $1.9\left(1 \mathrm{H}, \mathrm{t}, J 11.3, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.8(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and 1.7 , $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 3.1\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right.$ and $5.2(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}) ; \delta_{\mathrm{C}} 2.9$ and $4.7(2 \times \mathrm{MeSi})$, $14.1\left(\mathrm{MeCH}_{2}\right), 23.2$ $(\mathrm{MeC}=\mathrm{CH}), 23.0,23.1,29.5$ and $35.9\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right)$, $36.9\left(\mathrm{CHCH}_{2} \mathrm{Si}\right)$, 54.3 and $56.1\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 124.3(\mathrm{CH}=\mathrm{C})$ and $152.5(C=\mathrm{CH}) ; m / z 210\left(\mathrm{M}^{+}-15,100 \%\right), 168(34), 140(35)$, 127 (11), 126 (68), 124 (11), 112 (67), 97 (24), 59 (13), 41 (11) and 32 (27) (Found: C, 69.4; H, 12.0; N, 6.0. $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NSi}$ requires C, 69.25; H, 12.1; N, 6.2%).

3,5,5-Triethyl-1,2,3,4,5,8-hexahydro-1,5-azagermocine 36aa. $R_{\mathrm{f}} 0.25$ (hexane-diethyl ether $4: 1$); $\delta_{\mathrm{H}} 0.4(1 \mathrm{H}, \mathrm{dd}, J 13.4$ and 11.2, $\left.\mathrm{CHCH}_{2} \mathrm{Ge}\right), 0.7-1.4\left(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}, \mathrm{MeCH}_{2} \mathrm{CH}\right.$, $\mathrm{CHCH}_{2} \mathrm{Ge}$ and NH), $2.0\left(1 \mathrm{H}, \mathrm{t}, J 11.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.7$ ($1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}$), 3.2 and $3.4(2 \mathrm{H}, 2 \mathrm{dt}, J 18.4$ and $\left.2.5, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.6(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and 2.5 , $\mathrm{CH}=\mathrm{CHGe})$ and $6.3(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and $2.5, \mathrm{CH}=\mathrm{CHGe}) ; \delta_{\mathrm{C}} 9.1$ and $9.2\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 9.4$ and $9.9\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 11.6$ $\left(2 \times \mathrm{MeCH}_{2} \mathrm{C}\right), 18.1\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 29.3\left(\mathrm{MeCH}_{2} \mathrm{CH}\right), 38.5$ $\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 51.7$ and $56.5\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 126.4(\mathrm{CH}=C \mathrm{HGe})$ and 144.0 ($\mathrm{CH}=\mathrm{CHGe}$); $m / z 228\left(\mathrm{M}^{+}-29,100 \%\right.$), 227 (30), 226 (69), 224 (54), 130 (11), 128 (15) and 126 (12) (Found: C, $56.5 ; \mathrm{H}, 10.1 ; \mathrm{N}, 5.25 . \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NGe}$ requires $\mathrm{C}, 56.3 ; \mathrm{H}, 9.85 ; \mathrm{N}$, 5.45%).

3-Butyl-5,5-diethyl-1,2,3,4,5,8-hexahydro-1,5-azagermocine 36ab. $R_{\mathrm{f}} 0.28$ (hexane-diethyl ether $4: 1$); $\delta_{\mathrm{H}} 0.4$ (1 H , dd, J 13.3 and $\left.11.3, \mathrm{CHCH}_{2} \mathrm{Ge}\right), 0.7-1.5(22 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}$, $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CH}, \mathrm{CHCH}_{2} \mathrm{Ge}$ and NH), $2.1(1 \mathrm{H}, \mathrm{t}, J$ 11.7, $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.8\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 3.3$ and 3.5 $\left(2 \mathrm{H}, 2 \mathrm{dt}, J 18.3\right.$ and $\left.2.7, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}\right), 5.7(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and $2.7, \mathrm{CH}=\mathrm{CHGe}), 6.4(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and $2.7, \mathrm{CH}=\mathrm{CHGe}) ; \delta_{\mathrm{C}} 9.1$ and $9.2\left(2 \times \mathrm{Me} \mathrm{CH}_{2} \mathrm{Ge}\right), 9.4$ and $9.8\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 14.1$ $\left(\mathrm{MeCH}_{2} \mathrm{C}\right), 18.6\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 23.0$, 29.5 and $36.4\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right)$, $36.8\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 51.6$ and $56.8\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 126.5(\mathrm{CH}=$ $C \mathrm{HGe})$ and $143.9(\mathrm{CH}=\mathrm{CHGe}) ; m / z 256\left(\mathrm{M}^{+}-29,100 \%\right), 255$ (27), 254 (69), 252 (53), 158 (11), 156 (10), 142 (10), 130 (15), 128 (15), 126 (18), $115(10), 113$ (10), 103 (17), 101 (17), 99 (13), 75 (11), 68 (16), 55 (22), 43 (26), 42 (15), 41 (58) and 39 (20) (Found: C, 58.95; H, 10.6; N, 5.1. $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{NGe}$ requires $\mathrm{C}, 59.2$; H, 10.3; N, 4.9\%).

3,5,5-Triethyl-7-methyl-1,2,3,4,5,8-hexahydro-1,5-azagermocine 36ba. $R_{\mathrm{f}} 0.33$ (hexane-diethyl ether $4: 1$); $\delta_{\mathrm{H}} 0.3(1 \mathrm{H}$, dd, $J 13.2$ and $\left.11.2, \mathrm{CHCH}_{2} \mathrm{Ge}\right), 0.6-1.4(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}$, $\mathrm{MeCH}_{2} \mathrm{CH}, \mathrm{CHCH}_{2} \mathrm{Ge}$ and NH), $1.7(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CH}), 2.0(1$ $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 10.9, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.8\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right)$, 3.1 and $3.2\left(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J} 17.8, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right.$ and $5.3(1 \mathrm{H}$, s, $\mathrm{CH}=\mathrm{C}) ; \delta_{\mathrm{C}} 9.3\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 9.4$ and $10.1\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right)$, $11.7\left(\mathrm{MeCH}_{2} \mathrm{C}\right), 18.1\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 23.9(\mathrm{MeC}=\mathrm{CH}), 29.2$ $\left(\mathrm{MeCH}_{2} \mathrm{CH}\right), 38.5\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 54.9$ and $56.5\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, $121.0(\mathrm{CH}=\mathrm{C})$ and $150.7(\mathrm{C}=\mathrm{CH}) ; m / z 242\left(\mathrm{M}^{+}-29,71 \%\right), 241$ (22), 240 (54), 238 (39), 156 (10), 144 (11), 142 (23) 140 (16), 138
(12) 128 (10), 113 (15), 111 (11), 103 (27), 102 (13), 101 (26), 99 (20), 89 (13), 87 (10), 82 (22), 75 (19), 74 (11), 73 (14), 68 (22), 56 (17), 55 (42), 53 (18), 43 (38), 42 (29), 41 (100) and 39 (40) (Found: $\mathrm{M}^{+}-1,270.1285 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NGe}$ requires m / z, 270.1277).

3-Butyl-5,5-diethyl-7-methyl-1,2,3,4,5,8-hexahydro-1,5-azagermocine 36bb. $R_{\mathrm{f}} 0.38$ (hexane-diethyl ether 4:1); $\delta_{\mathrm{H}} 0.3(1 \mathrm{H}$, dd, $J 13.2$ and $\left.11.3, \mathrm{CHCH}_{2} \mathrm{Ge}\right), 0.6-1.5(22 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}$, $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CH}, \mathrm{CHCH} \mathrm{H}_{2} \mathrm{Ge}$ and NH$), 1.7(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{CH})$, $2.0\left(1 \mathrm{H}, \mathrm{t}, J 11.7, \mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right), 2.7(1 \mathrm{H}, \mathrm{d}, J 11.7$, $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right)$, 3.1 and $3.2\left(2 \mathrm{H}, 2 \mathrm{~d}, J 17.8, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)$ and $5.3(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}) ; \delta_{\mathrm{C}} 9.3$ and $9.4\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 9.5$ and 10.0 $\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right)$, $14.1\left(\mathrm{MeCH}_{2} \mathrm{C}\right), 18.7\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right), 23.9$ $(\mathrm{MeC}=\mathrm{CH}), 23.0,29.5$ and $36.4\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right), 36.7\left(\mathrm{CHCH}_{2} \mathrm{Ge}\right)$, 54.8 and $56.7\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 121.3(\mathrm{CH}=\mathrm{C})$ and $150.5(\mathrm{C}=\mathrm{CH})$; $m / z 270\left(\mathrm{M}^{+}-29,100 \%\right), 269(29), 268$ (72), 266 (55), 142 (13), 140 (12), 103 (10), 55 (15), 43 (12) and 41 (26) (Found: C, $60.5 ; \mathrm{H}, 10.7 ; \mathrm{N}, 4.5 . \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NGe}$ requires $\mathrm{C}, 60.45 ; \mathrm{H}, 10.5 ; \mathrm{N}$, 4.7%).
Ethyl 8-(4-ethyl-2-oxopyrrolidino)-1-naphthoate 37a. $R_{\mathrm{f}} 0.36$ (hexane-ethyl acetate 4:1); $\delta_{\mathrm{H}} 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{MeCH}_{2} \mathrm{C}\right), 1.2$ ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{MeCH}_{2} \mathrm{O}$), 1.2-1.5 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), 2.4 (3 H , m, CH and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.8\left(1 \mathrm{H}, \mathrm{dd}, J 14.0\right.$ and $\left.6.3, \mathrm{CH}_{2} \mathrm{~N}\right), 3.9(1$ $\mathrm{H}, \mathrm{dd}, J 14.0$ and $\left.7.1, \mathrm{CH}_{2} \mathrm{~N}\right), 4.0\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{O}\right)$ and $7.0-$ $8.0(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 10.7$ and $13.9(2 \times \mathrm{Me}), 24.4$ and 35.9 $\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right), 35.9(\mathrm{CH}), 43.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 60.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 105.3$, $119.9,123.9,124.8,126.1,128.3,128.3,128.7,130.5$ and 139.2 (ArC), 168.1 and $172.6(2 \times \mathrm{CO}) ; m / z 311\left(\mathrm{M}^{+}, 16 \%\right), 183(26)$, 182 (100), 169 (18), 127 (24) and 44 (23) (Found: C, 77.5; H, 7.0; $\mathrm{N}, 4.3 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.5 \%$).
Ethyl 8-(4-butyl-2-oxopyrrolidino)-1-naphthoate 37b. $R_{\mathrm{f}} 0.38$ (hexane-ethyl acetate 4:1); $\delta_{\mathrm{H}} 0.7\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me} \mathrm{CH}_{2} \mathrm{C}\right)$, $1.1\left(3 \mathrm{H}, \mathrm{t}, J 7.1, M e \mathrm{CH}_{2} \mathrm{O}\right), 1.1-1.4\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right)$, 2.2-2.4 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\mathrm{CH}_{2} \mathrm{CO}$), $3.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.9(2 \mathrm{H}$, $\left.\mathrm{q}, J 7.1, \mathrm{CH}_{2} \mathrm{O}\right)$ and $6.9-7.9(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 13.9$ and 14.0 $(2 \times \mathrm{Me}), 22.7,28.7,31.6$ and $36.6\left(4 \times \mathrm{CH}_{2} \mathrm{C}\right), 34.7(\mathrm{CH}), 43.9$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 60.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 105.4,120.1,124.1,124.9,126.3,128.4$, 128.5, 128.9, 130.7 and 139.4 (ArC) and 168.2 and 172.7 $(2 \times \mathrm{CO}) ; m / z 339\left(\mathrm{M}^{+}, 19 \%\right), 183(27), 182(100), 169(25), 154$ (11) and 127 (24) (Found: C, $74.05 ; \mathrm{H}, 7.2 ; \mathrm{N}, 4.3 . \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 74.3 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.1 \%$).
Ethyl 8-(4-tert-butyl-2-oxopyrrolidino)-1-naphthoate 37c. R_{f} 0.35 (hexane-ethyl acetate 4:1); $\delta_{\mathrm{H}} 0.8(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{Me} \mathrm{CH}_{2}\right), 1.1(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me}), 2.3(1 \mathrm{H}$, dd, $J 16.2$ and 6.9 , $\mathrm{CH}_{2} \mathrm{CO}$), $2.4\left(1 \mathrm{H}, \mathrm{dd}, J 16.2\right.$ and $\left.4.7, \mathrm{CH}_{2} \mathrm{CO}\right), 2.5(1 \mathrm{H}, \mathrm{m}$, CHCH_{2}), 3.4 and $3.5\left(2 \mathrm{H}, 2 \mathrm{dq}, \mathrm{J} 10.8\right.$ and $7.1, \mathrm{CH}_{2} \mathrm{Me}$), 3.9 (1 $\mathrm{H}, \mathrm{dd}, J 14.0$ and $\left.4.4, \mathrm{CH}_{2} \mathrm{~N}\right), 4.0(1 \mathrm{H}, \mathrm{dd}, J 14.0$ and 10.8 , $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$ and $7.0-8.0(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 13.4\left(\mathrm{MeCH}_{2}\right), 27.2$ $(3 \times M e \mathrm{C}), 32.7(\mathrm{CMe}), 33.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 41.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 43.6$ $\left(\mathrm{CHCH}_{2}\right), 59.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 105.3,119.9,123.8,124.9,126.2,128.2$, 128.3, 128.7, 130.5 and 139.2 (ArC) and 168.2 and 173.0 $(2 \times \mathrm{CO}) ; m / z 339\left(\mathrm{M}^{+}, 13 \%\right), 208(15), 183$ (17), 182(100), 169 (21), 154 (15), 127 (31) and 57 (11) (Found: C, 74.5; H, 7.1; N, 3.9%).

Ethyl 2-[(4-ethyl-2-oxopyrrolidino)methyl]benzoate 38a. R_{f} 0.31 (hexane-ethyl acetate 2:1); $\delta_{\mathrm{H}} 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{MeCH}_{2} \mathrm{C}\right)$, $1.1\left(3 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{MeCH}_{2} \mathrm{O}\right), 1.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.3(3 \mathrm{H}, \mathrm{m}$, CHCH_{2} and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.5\left(1 \mathrm{H}, \mathrm{dd}, J 13.8\right.$ and $\left.6.0, \mathrm{NCH}_{2} \mathrm{CH}\right)$, $3.6\left(1 \mathrm{H}, \mathrm{dd}, J 13.8\right.$ and $\left.8.2, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.9$ and $4.0(2 \mathrm{H}, 2 \mathrm{dq}, J$ 10.8 and $\left.7.2, \mathrm{CH}_{2} \mathrm{O}\right), 4.3$ and $4.5\left(2 \mathrm{H}, 2 \mathrm{~d}, J 16.9, \mathrm{CH}_{2} \mathrm{NC}\right)$ and $7.3-7.8(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 10.7$ and $13.8(2 \times \mathrm{Me}), 24.7\left(\mathrm{CH}_{2} \mathrm{C}\right)$, $35.8\left(\mathrm{CHCH}_{2}\right), 36.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 45.9$ and $50.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.1$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.5,123.4,127.7,131.1,132.3$ and 141.1 (ArC) and 168.7 and $172.8(2 \times \mathrm{CO}) ; m / z 275\left(\mathrm{M}^{+}, 10 \%\right), 230(13), 201$ (12), 188 (11), 146 (100) and 91 (22) (Found: C, 70.15; H, 7.5; N, 5.3. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 69.8 ; \mathrm{H}, 7.7 ; \mathrm{N}, 5.1 \%$).

Ethyl 2-[(4-butyl-2-oxopyrrolidino)methyl]benzoate 38b. R_{f} 0.36 (hexane-ethyl acetate $2: 1$); $\delta_{\mathrm{H}} 0.8\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{MeCH}_{2} \mathrm{C}\right)$,
$1.0\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{MeCH}_{2} \mathrm{O}\right), 1.2-1.3\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2} \mathrm{C}\right), 2.2$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.4(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 6.0 , $\mathrm{NCH}_{2} \mathrm{CH}$), $3.5\left(1 \mathrm{H}\right.$, dd, J 13.8 and $8.2, \mathrm{NCH}_{2} \mathrm{CH}$), 3.8 and 3.9 $\left(2 \mathrm{H}, 2 \mathrm{dq}, J 10.7\right.$ and $\left.7.3, \mathrm{CH}_{2} \mathrm{O}\right), 4.2$ and $4.4(2 \mathrm{H}, 2 \mathrm{~d}, J 17.0$, $\mathrm{NCH}_{2} \mathrm{C}$ and $7.3-7.7(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 13.8$ and $13.9(2 \times \mathrm{Me})$, 22.7, 28.6 and $31.9\left(3 \times \mathrm{CH}_{2} \mathrm{C}\right) 34.5\left(\mathrm{CHCH}_{2}\right), 36.9\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, 46.4 and $50.3\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 122.6,123.5,127.8$, 131.1, 132.4 and $141.1(\mathrm{ArC})$ and 168.8 and $172.9(2 \times \mathrm{CO}) ; m / z$ $303\left(\mathrm{M}^{+}, 6 \%\right), 147$ (18), 146 (100), 91 (17) and 44 (13) (Found: $\mathrm{M}^{+}, 303.1847 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{M}, 303.1834$).

Ethyl 2-[(4-tert-butyl-2-oxopyrrolidino)methyl]benzoate 38c. $R_{\mathrm{f}} 0.27$ (hexane-ethyl acetate 2:1); $\delta_{\mathrm{H}} 0.7(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{MeC}), 1.3$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{MeCH} 2$), $2.1-2.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{CO}$), $3.0\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $\left.8.6, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.1(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 8.0 , $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 4.2\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{2} \mathrm{O}\right), 4.6$ and $4.8(2 \mathrm{H}, 2 \mathrm{~d}, J$ $\left.15.9, \mathrm{NCH}_{2} \mathrm{C}\right)$ and $7.2-7.8(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 14.0\left(\mathrm{MeCH}_{2}\right)$, $26.1(3 \times \mathrm{MeC}), 30.9(\mathrm{CMe}), 32.2\left(\mathrm{CH}_{2} \mathrm{CO}\right), 41.4\left(\mathrm{CHCH}_{2}\right)$, 43.5 and $48.1\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.5,127.8,128.9$, 130.0, 131.7 and 137.1 (ArC) and 167.0 and $174.4(2 \times \mathrm{CO})$; $m / z 303\left(\mathrm{M}^{+}, 13 \%\right), 258$ (16), 257 (23), 246 (87), 228 (14), 218 (22), 200 (23), 172 (100), 146 (29), 145 (69), 144 (14), 135 (50), 134 (21), 133 (69), 132 (25), 130 (10), 118 (16), 117 (18), 105 (15), 104 (12), 91 (35), 90 (27), 89 (25), 84 (18), 79 (18), 77 (40), 69 (19), 68 (10), 57 (42), 55 (34), 41 (57) and 39 (11) (Found: C, $71.0 ; \mathrm{H}, 8.5 ; \mathrm{N}, 4.8 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.25 ; \mathrm{H}, 8.3 ; \mathrm{N}$, 4.6%).
4,4'-Di-tert-butyl-1,1'-ethylenedi(pyrrolidin-2-one) 39c. M.p. $102-104{ }^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}); $\delta_{\mathrm{H}} 0.8(18 \mathrm{H}, \mathrm{s}, 6 \times \mathrm{Me})$, 2.0-2.2 ($6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{CO}\right), 3.2-3.3(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{NCH}_{2} \mathrm{CH}\right)$ and $3.4\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}} 26.7(6 \times \mathrm{Me})$, $31.4(2 \times \mathrm{CMe}), 32.8\left(2 \times \mathrm{CH}_{2} \mathrm{CO}\right), 39.1$ and $48.2(4 \times$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 42.1(2 \times \mathrm{CH})$ and $174.9(2 \times \mathrm{CO}) ; m / z 308\left(\mathrm{M}^{+}, 3 \%\right)$, 251 (17), 168 (31), 167 (100), 154 (33), 110 (16), 70 (12), 57 (12), 55 (22) and 41 (15) (Found: C, 70.15; H, 10.3; N, 9.1. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 10.4 ; \mathrm{N}, 9.1 \%$).
3-Ethyl-1,1-dimethyl-1,2,3,4,5,6-hexahydro-5,1-benzazasilocine 40a. $R_{\mathrm{f}} 0.28$ (hexane-ethyl acetate 95:5); $\delta_{\mathrm{H}} 0.1(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{MeSi}), 0.2\left(1 \mathrm{H}, \mathrm{dd}, J 15.1\right.$ and $\left.10.6, \mathrm{CH}_{2} \mathrm{Si}\right), 0.8(3 \mathrm{H}, \mathrm{t}, J$ $7.3, \mathrm{MeC}), 0.8\left(1 \mathrm{H}\right.$, ddd, $J 15.1,5.6$ and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 0.9-1.2$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}\right), 1.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 1.9(1 \mathrm{H}$, $\left.\mathrm{t}, J 11.2, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.7(1 \mathrm{H}$, ddd, $J 11.2,3.7$ and 1.7 , $\mathrm{NCH} 2 \mathrm{CH}), 3.8$ and $4.0\left(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J} 16.1, \mathrm{NCH}_{2} \mathrm{C}\right)$ and $7.0-7.6$ (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 2.4$ and $4.2(2 \times \mathrm{MeSi}), 11.7(\mathrm{MeC}), 23.0$ and $28.6\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right), 38.7\left(\mathrm{CHCH}_{2}\right), 51.7$ and $52.7\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and 125.8, 125.9, 128.6, 136.1, 138.0 and 146.0 (ArC); $m / z 218$ $\left(\mathrm{M}^{+}-15,100 \%\right), 176$ (49), 163 (12), 162 (75), 160 (19), 149 (16), 148 (56), 133 (25), 132 (13), 131 (11) and 105 (12) (Found: $\mathrm{C}, 71.9 ; \mathrm{H}, 10.1 ; \mathrm{N}, 6.3 . \mathrm{C}_{14} \mathrm{H}_{23}$ NSi requires $\mathrm{C}, 72.05 ; \mathrm{H}, 9.95 ; \mathrm{N}$, 6.0%).

3-Butyl-1,1-dimethyl-1,2,3,4,5,6-hexahydro-5,1-benzazasilocine 40b. $R_{\mathrm{f}} 0.33$ (hexane-ethyl acetate $\left.95: 5\right) ; \delta_{\mathrm{H}} 0.1(6 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{MeSi}), 0.2\left(1 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.10.4, \mathrm{CH}_{2} \mathrm{Si}\right), 0.8(3 \mathrm{H}, \mathrm{t}, J$ $6.0, \mathrm{MeC}), 0.9\left(1 \mathrm{H}\right.$, ddd, $J 14.6,5.5$ and $\left.1.7, \mathrm{CH}_{2} \mathrm{Si}\right), 1.1-1.5(8 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}\left[\mathrm{CH}_{2}\right]_{3}$ and NH$), 1.9\left(1 \mathrm{H}, \mathrm{t}, J 11.6, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.7(1 \mathrm{H}$, ddd, $J 11.6,3.4$ and 1.7, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 3.8$ and $4.1(2 \mathrm{H}, 2 \mathrm{~d}, J 16.0$, $\left.\mathrm{NCH}_{2} \mathrm{C}\right)$ and $7.0-7.6(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 2.5$ and $4.2(2 \times$ $\mathrm{MeSi})$, $14.1(\mathrm{MeC}), 22.9,23.5,29.5$ and $35.7\left(4 \times \mathrm{CH}_{2} \mathrm{C}\right), 37.0$ $\left(\mathrm{CHCH}_{2}\right), 51.7$ and $53.0\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 125.9,126.0,128.7,136.2$, 138.1 and $146.0(\mathrm{ArC}) ; m / z 246\left(\mathrm{M}^{+}-15,100 \%\right), 177(13), 176$ (74), 163 (14), 162 (88), 160 (19), 149 (17), 148 (66), 133 (28), 132 (13), 131 (11), 105 (12), 91 (10), 86 (10) and 59 (11) (Found: C, 73.3; $\mathrm{H}, 10.6 ; \mathrm{N}, 5.0 . \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NSi}$ requires $\mathrm{C}, 73.5 ; \mathrm{H}, 10.4 ; \mathrm{N}$, 5.35%).

1,1,3-Triethyl-1,2,3,4,5,6-hexahydro-5,1-benzazagermocine 41a. $R_{\mathrm{f}} 0.23$ (hexane-ethyl acetate $9: 1$); $\delta_{\mathrm{H}} 0.4(1 \mathrm{H}, \mathrm{dd}, J$ 13.3 and 11.2, $\left.\mathrm{GeCH}_{2} \mathrm{CH}\right), 0.7-1.4(18 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}$, $\mathrm{EtCHCH}_{2} \mathrm{Ge}$ and NH), $2.0\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.0, \mathrm{NCH}_{2} \mathrm{CH}\right), 2.7(1 \mathrm{H}$, ddd, $J 12.0,3.4$ and 1.7, $\left.\mathrm{NCH}_{2} \mathrm{CH}\right), 3.9\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}\right)$ and
7.0-7.5 (4 H, m, ArH); $\delta_{\mathrm{C}} 8.6\left(2 \times \mathrm{GeCH}_{2} \mathrm{Me}\right), 9.3(2 \times$ $\left.\mathrm{MeCH}_{2} \mathrm{Ge}\right), 11.5\left(\mathrm{MeCH}_{2} \mathrm{C}\right), 18.7$ and $29.0\left(2 \times \mathrm{CH}_{2} \mathrm{C}\right), 38.5$ $\left(\mathrm{CHCH}_{2}\right), 53.1$ and $53.6\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and 125.6, 126.6, 127.7, $134.9,137.9$ and $145.6(\mathrm{ArC}) ; m / z 278\left(\mathrm{M}^{+}-29,100 \%\right), 277$ (34), 276 (79), 274 (59), 208 (16), 206 (13), 178 (17), 176 (14), 174 (12), 165 (11), 163 (13), 91 (29) and 44 (10) (Found: $\mathrm{M}^{+}-1$, 306.1277. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NGe}$ requires $M, 306.1277$.

3-Butyl-1,1-diethyl-1,2,3,4,5,6-hexahydro-5,1-benzazagermocine 41b. $R_{\mathrm{f}} 0.28$ (hexane-ethyl acetate $\left.9: 1\right) ; \delta_{\mathrm{H}} 0.4(1 \mathrm{H}$, dd, J 13.7 and $\left.11.2, \mathrm{GeCH}_{2} \mathrm{CH}\right), 0.7-1.4(22 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{EtGe}$, $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{CHCH}_{2} \mathrm{Ge}$ and NH$), 1.9\left(1 \mathrm{H}, \mathrm{t}, J 12.0, \mathrm{NCH}_{2} \mathrm{CH}\right)$, $2.7\left(1 \mathrm{H}\right.$, ddd, $J 12.0,3.1$ and $\left.1.4, \mathrm{NCH}_{2} \mathrm{CH}\right), 3.9(2 \mathrm{H}$, s, $\left.\mathrm{NCH}_{2} \mathrm{C}\right)$ and $7.0-7.5(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 8.8\left(2 \times \mathrm{GeCH}_{2} \mathrm{Me}\right)$, $9.5\left(2 \times \mathrm{MeCH}_{2} \mathrm{Ge}\right), 14.1\left(\mathrm{MeCH}_{2} \mathrm{C}\right), 19.4,23.0,29.5$ and 36.3 $\left(4 \times \mathrm{CH}_{2} \mathrm{C}\right), 37.1\left(\mathrm{CHCH}_{2}\right), 53.2$ and $54.0\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$ and $125.8,126.8,127.9,135.1,138.2$ and $145.8(\mathrm{ArC}) ; m / z 306$ ($\mathrm{M}^{+}-29,100 \%$), 305 (32), 304 (67), 302 (53), 208 (16), 206 (14), 178 (17), 176 (14), 165 (11), 163 (12), 91 (32) and 44 (12) (Found: C, 64.45; H, 9.5; N, 4.0. $\mathrm{C}_{18} \mathrm{H}_{31}$ NGe requires $\mathrm{C}, 64.7$; H, 9.35; N, 4.2\%).

Preparation of (Z)-N-Allyl-3-(tributylstannyl)allylamine 22. -A solution of BuLi (5 mmol) in hexane was added to a solution of diallylamine $1 \mathbf{1 a}(5 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred for 20 min at temperatures in the range -50 to $-30^{\circ} \mathrm{C}$. A solution of $\mathrm{Bu}^{t} \mathrm{Li}(5 \mathrm{mmol})$ in pentane was added to the resulting mixture at $-30^{\circ} \mathrm{C}$ which was then stirred for 2 h while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The mixture was cooled at $-78^{\circ} \mathrm{C}$, and tributylchlorotin (5 mmol) was added, and the mixture was stirred while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The resulting mixture was then hydrolysed with water and extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were removed (15 mmHg), and the residue was purified by flash column chromatography (silica gel; hexane-diethyl ether $1: 1$) to obtain amine $22(1.78 \mathrm{~g} \mathrm{92} \%$); R_{f} (hexane-diethyl ether $1: 1$); $\delta_{\mathrm{H}} 0.8-1.6(28 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{BuSn}$ and NH$), 3.2\left(2 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CHSn}\right), 3.3(2 \mathrm{H}, \mathrm{d}, J 5.6$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.1\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.2, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.2(1 \mathrm{H}, \mathrm{d}, J$ $\left.17.2, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.9\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.0(1 \mathrm{H}, \mathrm{d}, J 12.6$, $\mathrm{CHSn})$ and $6.6(1 \mathrm{H}, \mathrm{dt}, J 12.6$ and $6.3, \mathrm{CH}=\mathrm{CHSn}) ; \delta_{\mathrm{C}} 10.3$ $\left(3 \times \mathrm{CH}_{2} \mathrm{Sn}\right), 13.6(3 \times \mathrm{Me}), 27.2$ and $29.1\left(6 \times \mathrm{CH}_{2} \mathrm{C}\right), 52.1$ and $54.5\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 115.8\left(\mathrm{CH}_{2}=\mathrm{C}\right)$ and $130.9,136.6$ and $146.5(3 \times C H=C) ; m / z 330\left(\mathrm{M}^{+}-57,100 \%\right), 329(34), 328$ (78), 327 (31), 326 (47), 177 (13), 175 (12), 174 (12), 121 (26), 120 (16), 119 (22), 118 (12), 117 (13), 96 (36), 94 (14), 41 (41) and 39 (11) (Found: C, 55.9; H, 9.5; H, 9.5; N, 3.65. $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{NSn}$ requires $\mathrm{C}, 55.8 ; \mathrm{H}, 9.6 ; \mathrm{N}, 3.6 \%$).

General Procedure for the Preparation of Intermediate 3a and its Reaction with Electrophiles.-A solution of $\mathrm{BuLi}(5 \mathrm{mmol})$ in hexane was added to a solution of the amine $22(5 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$ under nitrogen and the mixture was stirred for 20 min at temperatures in the range -50 to $-30^{\circ} \mathrm{C}$. A solution of $\mathrm{Bu}{ }^{t} \mathrm{Li}(5 \mathrm{mmol})$ in pentane was added to the resulting mixture at $-30^{\circ} \mathrm{C}$, and the mixture was stirred for 4 h while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The mixture was cooled to $-30^{\circ} \mathrm{C}$, a solution of $\mathrm{BuLi}(5$ mmol) in hexane was added, and the mixture was stirred for 4 h at between -20 and $20^{\circ} \mathrm{C}$. After cooling of the mixture to $-78^{\circ} \mathrm{C}$, an excess of the corresponding electrophile was added, and the mixture was stirred while the temperature was allowed to rise to $20^{\circ} \mathrm{C}$. The resulting mixture was then hydrolysed with water and extracted with diethyl ether. The combined ether
layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and the resulting crude was purified by flash column chromatography.
(E,E)-Diethyl 5-azanona-2,7-dienedioate 42. $R_{\mathrm{f}} 0.38\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}} 1.3(6 \mathrm{H}, \mathrm{t}, J 7.1,2 \times \mathrm{Me}), 1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.4(4 \mathrm{H}, \mathrm{dd}, J 5.3$ and $\left.1.8,2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 4.2\left(4 \mathrm{H}, \mathrm{q}, J 7.1,2 \times \mathrm{CH}_{2} \mathrm{Me}\right), 6.0(2 \mathrm{H}$, $\mathrm{dt}, J 15.7$ and $1.8,2 \times \mathrm{CHCO})$ and $6.9(2 \mathrm{H}, \mathrm{dt}, J 15.7$ and 5.3 , $\left.2 \times \mathrm{CHCH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}} 13.9(2 \times \mathrm{Me}), 49.3\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 60.1$ $\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 121.5(2 \times C \mathrm{HCO}), 145.9\left(2 \times \mathrm{CHCH}_{2} \mathrm{~N}\right)$ and $166.0(2 \times \mathrm{CO}) ; m / z 212\left(\mathrm{M}^{+}-29,7 \%\right), 128(100), 114(11), 94$ (19), $86(12), 85(60), 84(13), 82(30), 68(37), 57(16), 55(11)$ and 39 (13) (Found: C, $59.5 ; \mathrm{H}, 7.7 ; \mathrm{N}, 5.5 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, 59.7 ; H, 7.9; N, 5.8%).

5,5-Dimethyl-1,2,5,8-tetrahydro-1,5-azasilocine 43. $R_{\mathbf{f}} 0.33$ (hexane-diethyl ether $2: 1) ; \delta_{\mathrm{H}} 0.1(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 1.6(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 3.4\left(4 \mathrm{H}, \mathrm{t}, J 2.5,2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 5.6(2 \mathrm{H}, \mathrm{dt}, J 12.3$ and 2.5 , $2 \times \mathrm{CHSi}), 6.4\left(2 \mathrm{H}, \mathrm{dt}, J 12.3\right.$ and $\left.2.5,2 \times \mathrm{CHCH}_{2}\right) ; \delta_{\mathrm{C}} 3.7$ $(2 \times \mathrm{Me}), 52.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 129.9(2 \times \mathrm{CHSi})$ and 145.7 ($2 \times \mathrm{CHCH}_{2}$) ; m/z $138\left(\mathrm{M}^{+}-15,100 \%\right.$), 112 (25), 110 (21) and 109 (27) (Found: $\mathrm{C}, 62.5 ; \mathrm{H}, 10.1 ; \mathrm{N}, 8.9 \mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NSi}$ requires C, $62.7 ; \mathrm{H}, 9.85$; N, 9.1%).

5,5-Diethyl-1,2,5,8-tetrahydro-1,5-azagermocine 44. $R_{\mathrm{f}} 0.34$ (hexane-diethyl ether $1: 2) ; \delta_{\mathrm{H}} 0.8\left(4 \mathrm{H}, \mathrm{q}, J 7.7,2 \times \mathrm{CH}_{2} \mathrm{Ge}\right)$, $1.0(6 \mathrm{H}, \mathrm{t}, J 7.7,2 \times \mathrm{Me}), 1.3(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.4(4 \mathrm{H}, \mathrm{dd}, J 4.1$ and $\left.1.6,2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 5.9(2 \mathrm{H}, \mathrm{dt}, J 12.1$ and $1.6,2 \times \mathrm{CHGe})$ and $6.4\left(2 \mathrm{H}\right.$, dt, $J 12.1$ and $\left.4.1,2 \times \mathrm{CHCH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}} 9.1$ $\left(2 \times \mathrm{CH}_{2} \mathrm{Ge}\right.$ and $\left.2 \times \mathrm{Me}\right)$, $50.2\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 129.2(2 \times$ $\mathrm{CHGe})$ and $142.9\left(2 \times \mathrm{CHCH}_{2} \mathrm{~N}\right) ; m / z 198\left(\mathrm{M}^{+}-29,100 \%\right)$, 197 (30), 196 (78), 194 (55), 128 (22), 126(17), 113 (12), 101 (14), 99 (14) and 94 (15) (Found: 53.45; H, 8.3; N, 6.0. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NGe}$ requires $\mathrm{C}, 53.2 ; \mathrm{H}, 8.5 ; \mathrm{N}, 6.2 \%$).

Acknowledgements

Financial support from the Dirección General de Investigación Científica y Técnica (DGICYT, PB89-0538) is gratefully acknowledged. R. G. thanks the Ministerio de Educación y Ciencia for a fellowship. J. B. acknowledges Dr. X. Huguet for the measurement of the HRMS spectra.

References

1 G. P. Lutz, A. P. Wallin, S. T. Kerrick and P. Beak, J. Org. Chem., 1991, 56, 4938 and references cited therein.
2 J. Barluenga, F. J. Fañanȧs, F. Foubelo and M. Yus, J. Chem. Soc., Chem. Commun., 1988, 1135; Tetrahedron Lett., 1988, 29, 4859; J. Barluenga, F. Foubelo, F. J. Fañanás and M. Yus, J. Chem. Res., 1989, (S) 200; (M) 1524.
3 See, for example: J. K. Crandall and A. C. Clark, J. Org. Chem., 1972, 37, 4236; J. K. Crandall and A. C. Rojas, Org. Synth., 1976, 55, 1.
4 J. Barluenga, F. Foubelo, R. Gonzàlez, F. J. Fañanás and M. Yus, J. Chem. Soc., Chem. Commun., 1990, 587.

5 P. Beak and A. I. Meyers, Acc. Chem. Res., 1986, 19, 356.
6 R. E. Ludt and C. R. Hauser, J. Org. Chem., 1971, 36, 1607; N. J. R. van Eikema Hommes and P. von Ragué Schleyer, Angew. Chem., Int. Ed. Engl., 1992, 31, 755.
7 J. Barluenga, R. González and F. J. Fañanás, Tetrahedron Lett., 1992, 33, 831.
8 J. Barluenga, F. Foubelo, R. González, F. J. Fañanás and M. Yus, J. Chem. Soc., Chem. Commun., 1990, 1521.

9 J. Barluenga, F. Foubelo, R. González, F. J. Fañanás and M. Yus, J. Chem. Soc., Chem. Commun., 1991, 1001.

Paper 3/06244I
Received 19th October 1993
Accepted 26th November 1993

